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What is this all about?

Consider the problem of assigning one label to each sample in a
given image, where a sample may be a pixel,

superpixel (connected region with a same texture),

object (connected region with known shape, usually), or

subimage (region around some object of interest).
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What is this all about?

Machines can learn how to annotate images, but

they require a training set with manually isolated and
identified samples.

As image databases grow large, the procedure becomes
infeasible, especially when it requires specialists.
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What is this all about?

The prior annotation strategy also leaves unanswered several
important questions.

How many training samples are needed? Which ones are the
most effective?

Can the machines learn from their errors? Are all errors
helpful for machine learning?

Can the specialists understand the behavior of the machines,
explain their actions, and trust on their decisions?

What can machines and specialists learn from each other?
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Purpose of the lecture

This lecture

motivates a change from the traditional to the interactive
machine learning paradigm,

integrates research from several subjects in Visual Computing
to address the problem, and

presents a methodology that exploits

the superior abilities of humans in knowledge abstraction and

the higher capacity of machines for data processing.
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Methodology for interactive machine learning
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Organization

The lecture is organized as follows.

Active modeling of object shapes for sample extraction.

Visual feature learning for sample characterization.

Visual active learning for sample classification.

Example:
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Active modeling of object shapes

Objects as samples: shape models can be learned from a few
examples, applied, and improved by interactive segmentation
corrections.

The shape and texture models aim at substituting humans in
image segmentation.
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Image segmentation

Image segmentation consists of recognition (humans � machines)
and delineation (machines � humans) tasks.

The object is an optimum-path forest rooted at its internal markers
(Falcão et al, IEEE TPAMI’04, Falcão and Bergo, IEEE TMI’04, Miranda et al JMIV’09, Ciesielski et al, JMIV’12,

Mansilla et al, SIBGRAPI’16).
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Image segmentation

How can texture and shape models substitute a human in object
localization?

A shape model estimates markers, while it translates and
imposes shape constraints for object delineation.

A criterion function selects the object at the location of
maximum delineation score.

A texture classifier can reduce candidate locations and avoid wrong
marker selection.
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Image segmentation

Result of model-based segmentation of the brain hemispheres and
cerebellum without the brain stem.

We have developed two types of shape models under this
segmentation paradigm, fuzzy models and statistical atlases
(Miranda et al, ISBI09, Udupa et al, MEDIA’14, Phellan et al, Medical Physics’16, Spina et al, SIBGRAPI’16).
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Fuzzy object shape models: construction and use
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Statistical atlases: construction and use
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The role of the texture classifier

Abnormal brain: the texture classifier avoids internal markers in
surgically removed regions of the brain.

Corrections in this optimum-path forest is difficult, due to the high
number of roots (low number of markers).
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Segmentation correction

Errors in segmentation can be interactively corrected, without
starting over, by converting the result into an optimum-path forest
rooted at a few markers (Falcão and Bergo, TMI’04, Miranda et al, SIBGRAPI’10 and ISBI’11).
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Segmentation correction

Errors in segmentation can be interactively corrected by converting
the result into an optimum-path forest rooted at a few markers
(Miranda et al, SIBGRAPI’10 and ISBI’11).

The model can then be improved by adding to it the new example
of the object’s shape.
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Visual feature learning

For a reasonable training set, visual feature learning aims at
considerably improving sample characterization.
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Visual feature learning

Data-driven approaches, such as bag of visual words and deep
learning methods, may be applied.

Can visual analytics help the specialist to understand and intervene
in the feature learning process?
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Deep feature learning

A deep neural network may be interpreted by parts.

Feature learning aims at optimizing the parameters of the network,
such that the output of the last hidden layer is an effective feature
vector.

20 / 33



Deep feature learning

A deep neural network may be interpreted by parts.

Feature learning aims at optimizing the parameters of the network,
such that the output of the last hidden layer is an effective feature
vector.

20 / 33



Convolutional network

Convolutional networks (ConvNets) are very effective for sample
characterization.
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Visual feature learning

The best strategy is to use a known network architecture for a
similar problem and refine its synaptic weights by back
propagation.

One may also learn the architecture of the ConvNet by
adopting random synaptic weights and replacing the MLP by
a SVM classifier (Chiachia et al, IEEE TIFS’14, Menotti et al, IEEE TIFS’15).

In any case, visual analytics may help the specialist to assess

features before and after dimensionality reduction,

features from distinct learning strategies,

the most important features for a given class,

the evolution of the training process, etc.

and to intervene in the process.
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Visual analytics

Higher separability implies higher accuracy (Rauber et al, EuroVis’15).

Sample projections (t-SNE) from <1000 of the last HL of a MLP
(with 4 HLs), before (left) and after (right) training (MNIST test
set).
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Visual analytics

Sample projections of the inter-layer evolution of the MLP (with 4
HLs) after training (MNIST test set).

It shows compact clusters and a few outliers (Rauber et al, EuroVis’16).
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Visual analytics

Sample projections (left) from <512 of the last CNN HL (MNIST
test set). Neuron projections (right) colored by their discriminative
power for class 8 versus the rest. (Rauber et al, IEEE TVCG’16)
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Visual analytics

Specialized neurons fire on confusing inputs (SVHN test set).

Last CNN HL after training. Discriminative neuron map (left) and
sample projection (right) colored by the activation of neuron 460,
which is related to class 3. (Rauber et al, IEEE TVCG’16)
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Visual active learning

Visual active learning must select representative samples from all
classes, and then evolve by selecting informative samples.
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Visual active learning

At each iteration, the classifier labels and selects samples for label
supervision and data augmentation (Saito et al, ICPR’14, Amorim et al, Patt.Recog.’16).

The increased semi-supervised training set is expected to improve
the classifier.
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Visual analytics

Visual analytics allows the specialist to

assess the organized data,

observe samples selected by the classifier,

intervene on label propagation to unsupervised samples, etc.

Can it help to improve the design of the classifier?
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Visual analytics

Consider a real example from the automated diagnosis of intestinal
parasites (Saito et al, Patt. Recogn.’15).

It is easy to isolate larvae of helminths and impurities (large being
some similar to larvae) from other classes by simple shape features.
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Visual analytics

By projecting (t-SNE) larvae of helminths (blue), impurities (red),
and the unsupervised samples (black) from <256, the specialist can
intervene in label propagation for data augmentation.
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Conclusive remarks

Interactive machine learning is the way to build explainable
image annotation systems.

Active modeling of object shapes, visual active learning, and
visual feature learning are new topics for research.

In all cases, the challenges involve

to minimize human effort in creating training sets,

to provide response to the humans’ actions at interactive time,
and

to speed up convergence from human intervention (i.e.,
without losing control over the process).
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