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Introduction

• Graph-based clustering algorithms - Optimum Path Forest:

◦ Samples are represented by nodes of a graph.

◦ Competition-based learning process.

◦ Application in bag-of-visual words.
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Optimum-Path Forest

• Nodes are connected by edges weighted by their distance (e.g.,
Euclidean distance).
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Optimum-Path Forest

• Nodes are weighted by a probability density function ρ.
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Optimum-Path Forest
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Optimum-Path Forest

• Create a priority queue Q ordered by the value of V .
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Optimum-Path Forest

• Remove from Q the node with the highest value.
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Optimum-Path Forest

• Check if node’s predecessor is null. Update V and create new label
l , if so.

• Node becomes a prototype.
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Optimum-Path Forest

• V (B)← tmp

• l(B)← l(A)
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Optimum-Path Forest
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Learning Deep Representations

• OPF does not require the number of clusters beforehand.

• Playing with kmax can be prohibitive for large datasets.

• Apply multiple clustering layers.

• Prototypes of the first layer are the samples of the second layer,
and so on.

• Prototypes are located at regions of high density.

48 of 65



Learning Deep Representations

• OPF does not require the number of clusters beforehand.

• Playing with kmax can be prohibitive for large datasets.

• Apply multiple clustering layers.

• Prototypes of the first layer are the samples of the second layer,
and so on.

• Prototypes are located at regions of high density.

48 of 65



Learning Deep Representations

• OPF does not require the number of clusters beforehand.

• Playing with kmax can be prohibitive for large datasets.

• Apply multiple clustering layers.

• Prototypes of the first layer are the samples of the second layer,
and so on.

• Prototypes are located at regions of high density.

48 of 65



Learning Deep Representations

• OPF does not require the number of clusters beforehand.

• Playing with kmax can be prohibitive for large datasets.

• Apply multiple clustering layers.

• Prototypes of the first layer are the samples of the second layer,
and so on.

• Prototypes are located at regions of high density.

48 of 65



Learning Deep Representations

• OPF does not require the number of clusters beforehand.

• Playing with kmax can be prohibitive for large datasets.

• Apply multiple clustering layers.

• Prototypes of the first layer are the samples of the second layer,
and so on.

• Prototypes are located at regions of high density.

48 of 65



Learning Deep Representations
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Methodology and Experimental Results

• Unlabeled dataset:
◦ 3D seismic data

• Labeled dataset:
◦ CIFAR10

◦ CIFAR100

◦ MNIST
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Methodology and Experimental Results

• Seismic Images:
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Methodology and Experimental Results

• Seismic Images:

Layer
Image 1 2 3 4
924 4,102 41 8 3

928 4,135 41 6 2

932 4,074 38 6 2

936 4,144 41 10 2

940 4,193 44 8 2
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Methodology and Experimental Results
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Methodology and Experimental Results

• General-purpose Images:
◦ CIFAR-10: 60,000 images of size 32×32 distributed in 10 classes.
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Methodology and Experimental Results

• General-purpose Images:
◦ CIFAR-100: 60,000 images of size 32×32 distributed in 100 classes

(finer) grouped in 20 superclasses (coarser).
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Methodology and Experimental Results

• General-purpose Images:
◦ MNIST: 70,000 images of handwritten digits distributed in 10 classes.
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Methodology and Experimental Results

• General-purpose Images - Metrics:

◦ Homogeneity (H): each cluster contains only members of a single
class. H ∈ [0, 1], where H = 1 denotes the best result.

◦ Completeness (C): all members of a given class are assigned to the
same cluster. C ∈ [0, 1], where C = 1 denotes the best result.

◦ V-measure (V): this metric is the harmonic mean between
homogeneity and completeness, given by:

V = 2 ∗ (H ∗ C )

(H + C )
. (1)
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Methodology and Experimental Results

• General-purpose Images:

Layer
Dataset 1 2 3 4
CIFAR 10 137 121 17 8

CIFAR 100 216 163 24 15

MNIST 221 145 5 2
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Methodology and Experimental Results

• General-purpose Images - CIFAR10:

Technique
Metric OPF k-means Mean-Shift SOM

H 0.000 0.054 0.001 0.049

C 0.153 0.060 0.039 0.056

V 0.000 0.057 0.001 0.052
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Methodology and Experimental Results

• General-purpose Images - CIFAR100:

Technique
Metric OPF k-means Mean-Shift SOM

H 0.010 0.033 0.001 0.030

C 0.069 0.038 0.077 0.034

V 0.017 0.035 0.003 0.032
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Methodology and Experimental Results

• General-purpose Images - MNIST:

Technique
Metric OPF k-means Mean-Shift SOM

H 0.000 0.007 0.000 0.073
C 1.000 0.024 0.005 0.376

V 0.000 0.011 0.001 0.122
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Conclusions

• Deep-driven approach using OPF.

• OPF provided gain in resolution in seismic data.

• OPF was able to find number of clusters close to real number in 2
out of 3 datasets.

• Flexible tool for unsupervised learning.

• Techniques are complementary.
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Thank you!
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Q&A
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