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~ Summary

Introduction to MRI

MRI scanner

NMR phenomenon

Relaxation timesT1 and T2

Image formation: Spin-echo technique (TR and TE)



Introduction to MRI

MRI Scanner Cutaway
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https://pancreaticcanceraction.org/about-pancreatic-
cancer/diagnosis/second-line-investigations/mri-scan

Typical magnetic field 1T a 4T (1T=

magnetic field).

Eletrico motor:3000G (max). Supercondutor coils.

http://london-imaging.co.uk/growing-use-mri-mental-
health/
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MRI: acquisition - voxel (~ 1 mm?)
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MRI| modalities slices

Proton Density T1-weighted T2-weighted

Each modality depends on TR and TE - MRI scanner acquisition

parameter Sy

http://www.bic.mni.mcqill.ca/brainweb/ W



Curiosity: NMR spectroscopy - macromolecules structure

Yearly Growth of Structures Solved By NMR Yearly Growth of Structures Solved By X-ray
number of structures can be viewed by hovering mouse over the bar number of structures can be viewed by hovering mouse over the bar
Mumkber Mumber
0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4500 5000 5500 6,000 6,500 7000 7,500 8000 50 0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000 55,001
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http://www.mhhe.com/physsci/chemistry/
carey/student/olc/ch13nmr.html



NMR phenomenon

Nuclear
Magnetic
Resonance

1946 - NMR phenomenon was first
observed iby Bloch and Purcell el al.
1973 - first MR image was only
obtained by P.C. Lautenburin 1973



N: Spin nuclear

'q I}' Acharpid nuckaus wilh nanseso
BEAr CAN O B0 A g Te

Ltk s
¢Ell-ﬂ!-|'!m -ty Cppr— ) ———

Electron: spin Y2
Proton: spin 1/2

Neutron: spin 1/2 (despite zero electric charge!!! Quantum
phenomenon)

http://www.chm.bris.ac.uk/pt/polymer/techniqgues.shtml .
https://vam.anest.ufl.edu/simulations/nuclearmagneticresonance
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http://www.chm.bris.ac.uk/pt/polymer/techniques.shtml
http://www.chm.bris.ac.uk/pt/polymer/techniques.shtml

N: Spin nuclear

NMR Properties of Various Isotopes

Gyromagnetic Natural Concentration in
Nucleus Spin (42) ratio (MHz/T) (42) abundance (42) human tissue (41)
Hydrogen'H 1/2 42 .58 ~100% 88M
Deuterium *H 1 6.53 0.015% 13 mM
Sodium **Na 3/2 11.27 ~100% 80 mM
Phosphorous P 12 1.131 ~100% 75 mM
Oxygen 'O 5/2 ~-5.77 0.04% 16 mM
Fluorine "°F 1/2 2.627 ~100% 4mMm

* Ciriteria:
Must have ODD number of protons or ODD number of neutrons.

A Primer of MRI
Journal of Magnetic Resonance Imaging, vol. 35, p. 10381054, 2012.
Plewes, Donald b. and Kucharczyk, Walter,




M: Magnetic Field




M: Magnetic Field
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http://www.mhhe.com/physsci/chemistry/carey/student/olc/ch13nmr.html



R: Resonance
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Resonance
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Increasing magnetic field

AE = hf - condicao de
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MRI (pulsed RF)

MRI Scanner Cutaway




Block diagram of MRI scanner
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Precession of Nuclear spin in a magnetic field
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Net magnetization of nuclear spins in each voxel

— Quadrilaterals

_—
E

voxel (~ 1 mm?3)

Magnetic Resonance Imaging. Physical Principles and

Applications '

Paul Michael Walker MCU-PH, CNRS w



Net magnetization after a RF pulse (excitation)
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Development of a Quality Assurance Strategy for Magnetic Resonance Imaging in Radiotherapy
Author: Kristina Sandgren, Umea University Radiation Sciences Master’s Thesis in Engineering Physics, 2015 w



Net magnetization after a RF pulse

Detection of M., and return to equilibrium

The oscillation of M, generates a fluctuating magnetic field which can
be used to generate a current in a coil:

M,, o | |
¥ U %
Receiver coil (x) = NMR signal ’

Magnetic Resonance Imaging. Physical Principles and Applications
Paul Michael Walker MCU-PH, CNRS



Free Induction Decay
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Figure 1.7. The free induction decay (FID) 1s on the left and its Fourier transform (usual frequency

spectrum) 15 on the right.

Fundamentals of NMR, THOMAS L. JAMES A
Department of Pharmaceutical Chemistry, University of California w



FID and relaxation time T2*

Free Induction Decay and T2*

The Free Induction Decay
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The damping of the Free Induction
Decay |(FID) 1s governed by the
relaxation time T2*, which 1s
oreatly dependant on field
homogeneities.

In practice, the FID will only last a
few tens of milliseconds and the
signal must be acquired very
quickly if it is to be wused in
imaging.




Logitudinal Relaxation time T1 (spin-lattice)

NMR excitation

When the frequency of the alternating current is @ . the frequency
of the right vector of B, is @, and we achieve a resonant condition.
The alternating magnetic field and all the p's interact, there’s a
torque generated, and they rotate. Since they all rotate the same
amount, the macroscopic effect is that M, rotates around the y axis
|in this case...), and we generate transverse magnetization [ij,}:




Net magnetization relaxation
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Transverse Relaxation time T2 (spin-spin)

The Spin Echo Method and T2 Measurements

In order to facilitate the acquisition of the NMR signal and to reduce
the influence of magnet field heterogenieties a more complex rf pulse
sequence has been developed, the spin echo method.

The spin echo sequence 1s based on the application of two rf pulses : a
n/2-pulse followed by a n-pulse (or ‘refocussing pulse’)

rf H

laboratory [ [Pl
signal



Spin-echo (rotating frame)

n/2 RF pulse

Pulso RF &

http://pages.physics.cornell.edu/p510/G-7A_Pulsed NMR : Spin_Echo



Spin-echo (TR and TE)

TR: Repetition Time
TE: Echo Time

180°,
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http://www-mrsrl.stanford.edu/~brian/bloch/



Spin echo (TR andTE)

90° 180° Spin 180° Spin 90° 180° Spin
Echo Echo Echo

e e b

TE

L I
TR

http://mriquestions.com/fse-parameters.html



The Spin Echo Method : multiple rf pulses

" " ., " The signal arising from
multiple spin echoes

rf : : . t generated by regularly
0 © 2t 3 4 5t 6t Tt &t repeated m-pulses.

w3

! The signal decreases as a
! | Ef&aﬂ' ' function of TE. : shown by
: : the exponential envelope.




MRI intensity: PD, T1- and T2-weighted image

MRI constrast: Spin-echo equation

J= N—f(v)-[e_(?;]j .(1 - e(%]J

[: image intensity (pixel brightness)

N: proton density (tissue)

f(v): flux function (tissue)

TE: echo time (fixed at the machine)
TR: repetition time (fixed at the
machine)

T1: longitudinal relaxation time (tissue)
T2: transversal (spin-spin) relaxation

time (tissue)
Proton density: water and lipids




T1 and T2 values for tissues

T1 and T2 values at ‘

1.5 Tesla.
Tissue T1 (ms) T2 (ms)
Muscle 870 47
Liver 490 43
Kidney 650 58
Grey Matter 920 100
White Matter 790 92
Lung 830 80

CSF 2,400 160

https://en.wikibooks.org/wiki/Basic_Physics_of Nuclear Medicine
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WHITE MATTER
GREY MATTER
CSF
GADOLINIUM CHELATE
LOW CONCENTRATION
HIGH CONCENTRATION
HEMATOMA
HYPERACUTE(<6 HRS)
ACUTE(6-24 HRS) INTIDARK
SUBACUTE[1DAY-1MONTH) BRIGHT RIN
DARK RIM WITH OR WITHOUT &
BRIGHT CENTRE

http://casemed.case.edu/clerkships/neurology/NeurLrngObjectives/MRI.htm

CHRONIC[>1 MONTH)




{ PO
Weighted Weighted Weighted

Three types of ME image: the T1 weighted image depicts relativelv bright grev matter and dark ’
CSF; the T2 weighted image highlights the CSF. while the PD weighted image shows little
contrast between tissues.
O Along TR and short TE sequence is usually called Proton Density -weighted
0 Ashort TR and short TE sequence is usually called T1-weighted
0 Along TR and long TE sequence is usually called T2-weighted
- CSF: Cerebro-Spinal Fluid PP

https://en.wikibooks.org/wiki/Basic_Physics_of Nuclear_Medicine w




Magnetic Field Strength

Resonant Frequency
Low Medium High

Vb

Distance along Z-axis

http://en.wikibooks.org/wiki/Basic_Physics_of Nuclear Medicine
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~ Imagem

1. Select slice during excitation phase using a longitudinal gradient:

&

. S - High

Magnetic Field Strength

Distance along Z-axis

Z. Apply a tran s:iaarse gradient during the emission phase {0 acquire one projection:

F Fourier Transform of FIDO
Low High

g 5

Amplitude

Frequency




Image formation

K-space properties:

- Center of k-space center corresponds to low spatial frequencies (structure

of image)

- Boundary of k-space corresponds to high spatial frequencies (details of

Location of Information in k-space

Center of k-space
basic image contrast

Periphery of k-space
edges, details




TABLE 31.3 Medical Imaging Techniques

Technique Resolution
Conventional X-ray 2 mm
CT scan, X-ray 3 mm
Nuclear medicine (tracers) Tcm
SPET 1cm
PET 3-5 mm
NMR 2=1 mm

1.5 tesla scanners often cost between $1 million and $1.5 million
USD. 3.0 tesla scanners often cost between $2 million and $2.3
million USD.

MRI: 800 a 1000 reais
CT (adomen) : 400 a 600 reais



Magnetic resonance angiography - contrast with Gd

Author: Ofir Glazer, Bio-Medical Engineering Department, Tel-Aviv University, Israel. Part of M.Sc. final A
project, tutored by Dr. Hayit Greenspan.




Choling

Fig. 1. Patient 1 - MRI findings: (A) axial T1-weighted, (B) axial T2-weighted, (C) postcontrast axial T1-weighted and (D)
postcontrast sagittal T1-weighted MRI. The tumour is composed of a moderately enhanced solid portion that has a soap
bubble or spongy appearance (black arrows) and multiple cysts interfacing between the solid part of the tumour and the
lateral ventricular wall. Spicules (white arrows) formed by the cyst wall appear to form a connection between the solid part o
the tumour and the undulated lateral ventricular wall (arrowheads). (E) Susceptibility-weighted axial MRl showing multiple
low-intensity dots that reflect calcification and vessels. (F) Magnetic resonance spectroscopy showing high choline peaksn
low N-acetyl aspartate and myoinositol and/or glycine peaks.

ournal of Clinical Neuroscience Volume 19, Issue 5, May 2012, Pages 681-686 w
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A) T1l-weighted

B) Tl-weighted
With Gd

C) T2-weighted

D) Susceptibulity

E) Diffusion
coefficient map

F)CT

Figure. MRI T1l-weighted (A), T1-weighted with gadolinium (B), T2-weighted (C), and susceptibility-weighted (D)
sequences show hyperacute hemorrhages in the right frontal lobe and right parietal lobe (arrows). There is marked
peripheral nodular gadolinium enhancement within the right frontal hemorrhage (B, arrow). The apparent diffusion
coefficient map (E) shows hyperintensity within the right frontal hemorrhage (arrow) and hypointensity due to acute
infarction in the left precentral gyrus (double arrow). CT scan (F) 5.5 hours following MRI shows enlargement of the rig
frontal hemorrhage and no change in size of the right parietal hemorrhage (arrows).

Nguyen T N et al. Neurology 2006;66:E30-E30
AN ACADEMY OF

ROLOGY
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TR=400ms TR=520ms
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TE=58ms TE=80ms TE=106ms

) Magn Reson Imaging. 2005 Jul;22(1):13-22.
Routine clinical brain MRI sequences for use at 3.0 Tesla.
Lu H1, Nagae-Poetscher LM, Golay X, Lin D, Pomper M, van Zijl PC.




Fig 1. {A) Axial T1 weighted MRI before contrast administration shows a large left foraminal nod-

ule promoting mild left lateral ventricle enlargement. Bilateral cortical tubers are also seen. (B) Axial

71 weighted MRI post-contrast administration demonstrates strong enhancement of the left Monro
foramen nodule,




MRI spectroscopy mode :nonalcoholic fatty liver disease
(NAFLD)
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Figure. (A) FLAIR sequence at the level of the foramen of Monro shows cartical tubers (arrowhead) and subependymal nod-
ules (arrow) in the temporal horns of the lateral ventricles and at the left foramen of Monro region. The selected volumes of

interest are shown at the right and left foramen of Monro region. TH-MRS cbtained at the right (B) and left {C) foramen of
Monro region.

Arg. Neuro-Psiquiatr. vol.66 no.2b Sdo Paulo June 2008
doi: 10.1590/S0004-282X2008000300003

Proton MR spectroscopy of the foramen of Monro region in patients with tuberous sclerosis complex

Arnolfo de Carvalho-Neto'; Isac Bruck"; Sérgio A. Antoniuk"; Edson Marchiori"; Emerson L. Gasparetto"

'Department of Radiology, University of Parana, Curitiba PR, Brazil

'Department Neuropediatrics, University of Parana, Curitiba PR, Brazil

"University of Parana, Curitiba PR, Brazil, and Department of Radiology, University of Rio de Janeiro, Rio de Janeiro RJ, Brazil
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T2 * per voxel is sensitive to the ratio of deoxygenated hemoglobin and oxygenated

Increase in metabolic activity in the brain causes vasodilation and increased flow of oxygenated

blood, T2 * and increases voxel intensity increases
fMRI detects difference of 3%

BOLD signal (Blood Oxygen Level-Dependent)
oxygenated hemoglobin: diamagnetic
deoxygenated hemoglobin: Paramagnetic

v
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Magnetic Resonance Image
Processing and Analysis

Fabio Cappabianco — Institute of Science and Technology, Federal University of S&o Paulo
fcappabianco@gmail.com
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Outline

 MRI Intensity regularization
- High-frequency noise filtering
- Intensity normalization

- Inhomogeneity effect removal
 MRI segmentation — brain imaging case study

— Skull stripping
- Tissue segmentation/classification
- Small structure segmentation

& | i * Introduction to Research in Magnetic Resonance Imaging




Before we start ...

e For the exercises:

- Softwares:

e FSL - https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

« 3DSlicer - https://www.slicer.org/

» Freesurfer - https://surfer.nmr.mgh.harvard.edu/
e SPM - http://www.fil.ion.ucl.ac.uk/spm/

e BIAL - https://github.com/GIBIS-UNIFESP/BIAL
« BrainSuite - http://brainsuite.org/

- Databases:

e BrainWeb - http://brainweb.bic.mni.mcgill.ca/brainweb/
* IBSR 18 - https://www.nitrc.org/projects/ibsr

SAO JOSE DOS CAMPOS
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https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
https://www.slicer.org/
https://surfer.nmr.mgh.harvard.edu/
http://www.fil.ion.ucl.ac.uk/spm/
https://github.com/GIBIS-UNIFESP/BIAL
http://brainsuite.org/
http://brainweb.bic.mni.mcgill.ca/brainweb/
https://www.nitrc.org/projects/ibsr

MRI Intensity Regularization

N | * Introduction to Research in Magnetic Resonance Imaging
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High-frequency Noise Filtering

 In MRI - Rician distribution.
- PDF:

(024 2

f(X|V’O):izEXP (X +2V )
O 20

B 00 1 X 2m
IO(X)‘,,;, mIT(m+1) 2

Introduction to Research in Magnetic Resonance Imaging
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High-frequency Noise Filtering

Weak
filtering

Strong
filtering

SAO JOSE DOS CAMPOS

3
IBGRAP 1 6 Introduction to Research in Magnetic Resonance Imaging
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High-frequency Noise Filtering

» 1st generation of filters: isotropics
- e.g. Mean, median, gaussian
» 2nd generation of filters: local anisotropics
- e.g. diffusion, bilateral [Smith 1997]
« 3rd generation of filters: non-local anisotropics

- e.g. non-local means [Tristan-Vega 2012], BM3D,
PLOW

Y I Introduction to Research in Magnetic Resonance Imaging




High-frequency Noise Filtering

* |sotropic filters:
- Same operation over all pixels.
- Simplest — convolution.
- Fastest — O(n*a)
- Worst — borders also blurred.

Y 1™ Introduction to Research in Magnetic Resonance Imaging

XXIX CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES



High-frequency Noise Filtering

* Local anisotropic filters:

- Adaptive filter, depending on pixel adjacency
contents.

- Relatively simple, mostly iterative process.
- Reasonably fast - O(n*a*i)
- Much better results — stronger edges preserved.

AN e Introduction to Research in Magnetic Resonance Imaging




High-frequency Noise Filtering

* Non-local anisotropic filters:

- Tries to get more information from adjacencies with similar
Intensities or patterns of the filtered pixel.

- Very complex — requires clustering pixel patches.
- Very slow - O(no*a*i).
- Best results — Estimates noise and removes it.

 Newest:
http://www.nitrc.org/snapshots.php?group 1d=518

- [Tristan-Vega 2012]
- Compile with itk and add as module of 3DSlicer.

SAO JOSE DOS CAMPOS
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http://www.nitrc.org/snapshots.php?group_id=518

High-frequency Noise Filtering

e Exercise:

- Open 3D slicer

* Run gradient anisotropic filtering over t1_pn5_rf40.
- Open FSL

* Run Susan filtering over t1_pn5_rf40.
- Compare results and execution time.

4V | | * Introduction to Research in Magnetic Resonance Imaging
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High-frequency Noise Filtering

 Evaluation

- PSNR, MSE - global.

- SSIM and variations such as MSSIM. [Wang 2004] -
structural.

e Today's use...

- MRI is becoming almost noise free.
« 7 Tesla images are nice and clear ... in some ways!

- Even supervised training with patches from multiple images
was tested

* In medical images may generate incorrect results.

IO Introduction to Research in Magnetic Resonance Imaging
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Intensity Normalization

e Used to standardize
iIntensity range and
distribution of a set of
images.

« Based on landmarks.

- Normally, just mean
and guartiles are
enough.

- [Zhuge 2006]




Intensity Normalization

* Two steps method

- 1st—training: find landmarks in the histogram of
Input Image.

- 2nd — transformation: find landmarks in target
Images and map them to the ones of the training
iImage.

Y I Introduction to Research in Magnetic Resonance Imaging




Intensity Normalization

e Consequences:

- Improves inhomogeneity correction.

- May improve segmentation process based on
expected intensity ranges.

Introduction to Research in Magnetic Resonance Imaging
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Intensity Inhomogeneity Correction

» Consists of a multiplicative low-frequency
noise.

- I(s)=I(s)*B(s)+n(s)
 Depends on:

- Magnetic field or scanner features
- Scanned subject

~ ¥ 19 Introduction to Research in Magnetic Resonance Imaging




Intensity Inhomogeneity Correction

o Affects:

- Segmentation process
- Statistic measurements
- Human interpretation




Intensity Inhomogeneity Correction

e General methods:

- N3 [Sled 1998], N4 [Tustison 2010]
* Used over any kind of images.

* Brain specific methods:

- BFC, FAST (also segments tissues)
» Used over skull stripped brain images.

AN e Introduction to Research in Magnetic Resonance Imaging




Intensity Inhomogeneity Correction

e Exercise

- Open 3D slicer

* Run N4itk inhomogeneity correction over t1_pn5_rf40.

* Run N4itk inhomogeneity correction over t1_pn5 rf40
denoised.

* Run gradient anisotropic filtering over t1_pn5 rf40
unbiased.

- Compare results.

) N | * Introduction to Research in Magnetic Resonance Imaging
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Intensity Inhomogeneity Correction

« Evaluation:

- Using phantom.

- Post-segmentation results.
* Results:

- Even generic methods work better over mask.
- 7T Images have even greater inhomogeneuity.

- Not improved since N4 [Tustison 2010].
* Not a huge improvement since N3 from [Sled 1997]!!!

4y J ™ Introduction to Research in Magnetic Resonance Imaging




MRI Segmentation

« Why?
- Improved visualization.
- Statistical analysis.
- fMRI.
- 3D modeling.

IO Introduction to Research in Magnetic Resonance Imaging
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Skull Stripping

* ||l posed problem.

- Extract everything that
does not belong to the
brain.

- What about CSF?

- Optical nerve?

— Where does the brain
ends?

1M Introduction to Research in Magnetic Resonance Imaging




Skull Stripping

e Methods:

- Surface fitting:

 BET from FSL [Smith 2002].
« BSE from BrainSuite.

- Region growing:

« Hibrid watershed from Freesurfer. [Ségonne 2004]
- Mixed histogram matching:

« SPM (also segments tissues)

Introduction to Research in Magnetic Resonance Imaging
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Skull Stripping

e Exercise

- Open FSL

 Run bet over t1_pn5 rf40.
 Run bet over t1_pn5 rf40 denoised and unbiased.

* Run bet with COG correction over t1_pn5 rf40 denoised
and unbiased.

- Compare results
* Inhomogeneity correction effects [Miranda 2013]

4Y J Introduction to Research in Magnetic Resonance Imaging

XXIX CONFERENCE ON GRAPHICS, PATTERNé AND IM.AGES .



Skull Stripping

e Evaluation:

- Compare to manual segmentation. [Fennema-
Notestine 2006]

« Still, depends on human perception or goal application.
e Open questions:
- No method generates perfect segmentation.

- Depends on inhomogeneity correction for high
magnetic field MRI [Cappabianco 2012].

- Harder for pathological cases.

1 Introduction to Research in Magnetic Resonance Imaging
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Tissue Segmentation

» Definition:

- Label pixels into GM, WM, and CSF.
» Goal:

- Allow gquantization, analysis, fMRI studies.
* [Ssues:

- What about partial volume pixels?

Introduction to Research in Magnetic Resonance Imaging



Tissue Segmentation

e Methods:

- OPF clustering
- Gaussian mixture

- Markov random fields
[Zhang 2001]

- K-means

N - Introduction to Research in Magnetic Resonance Imaging




Tissue Segmentation

e Exercise

- Open FSL

 Run FAST with partial volume option
- Run c-means

- Run OPF clustering
« Compare results

Introduction to Research in Magnetic Resonance Imaging



Tissue Segmentation

 Evaluation:

- Area comparison metrics:
* Dice, Jaccard, Kappa.

- Parameter evaluation metrics:
 ROC curves. [Cappabianco 2012b]

* Open problems:

- How to generate the ground-truth?

- Manual or semi-automatic segmentation is still impossible
today.

- Evaluation without ground-truth [Boiux 07].

Introduction to Research in Magnetic Resonance Imaging
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Small Structure Segmentation

* Segmentation of sub-cortical or cortical
structures.

OPF

Introduction to Research in Magnetic Resonance Imaging



Small Structure Segmentation

* User iteration types

- Automatic
- Manual
- Semi-automatic
* Implementation types
- Region growing
- Edge delineation

Y I Introduction to Research in Magnetic Resonance Imaging




Other operations

* Pose estimation.

* Brain alignment.

« Surface extraction.
 Hemisphere symmetry analysis

* Registration

Introduction to Research in Magnetic Resonance Imaging
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Anisotropic Diffusion Filtering

* |terative process simulating thermal energy flow.

> (VL |,

PENs

It—!—l e It

VI 1
,nS, YWVI; , (1)
- [t —intensity of pixel s in instant ¢
- A — contant related to diffusion rate
- N, — pixels adjacent to s

- Al for x — magnitude of intensity directional gradient from s
top

- g( ) — edge stopping function
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Anisotropic Diffusion Filtering

e Edge stopping functions:

i

eI+ = g(|VIL |, MV, 1) o]
|778| g o8

Let y=A/|n | 5 osf
o(@,7) =exp (~2?/27) (2 sl
1 01}

9(z,7) = [1+ (@/7)?] (3)

Gradiani (=)

o(z,7) = { [1-(2%/59%)]” |= S’V}/g (4) [Black 1998]

0, otherwise
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Bilateral Filter

* Goal: average the intensity of pixels based on
iIntensity and spatial proximity

- BF(1(p)l=5,~ . G (lp=all)G, (I1(p)-1(q))1(q

p g€ Adj

. Wp IS a factor of normalization.
« G, are Gaussian functions.
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Non-local Means

e Same Idea as bilateral filter, but use information
from other image locations.

» Use patches to compare similar image
locations.

« Estimate intensity distance function based on
N-Dimensional vector, where N depends on the
patch size.

1

- NLM[I(p)]=1-- 2. G, (llp=all)G, (I Adi(p)-Adj(q)ll}I(q)

p qE€ Adj
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MSSIM

* Mean structural similarity index.
- SSIM(X,y)Z[l(x,y)]a-[c(x,y)]ﬁ-[s(x,y)]y
 Compares:

- Luminance
2quy+cl

’ I(X ’y): Mi+ui+C 1
— Contrast

20,0,+C,

» clxy)= 0i+0i+C2
— Structure

O+ C,

0,0,+C3

- MSSIM - Mean value of SSIM over local windows.

o s(x,y)=

SAO JOSE DOS CAMPOS
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Nonparametric Nonuniformity
Normalization (N3)

* Find a smooth, slowly varying, multiplicative field which maximizes
the frequency the input signal.

- Unknown frequency/distribution

- Large search space.

- Hard to estimate related measures (e.g. Entropy)
« Strategy:

- Sharpening input signal.

- Estimate true signal.
e Assumptions:

- Bias has unimodal Gaussian distribution.

- Zero noise.

IO Introduction to Research in Magnetic Resonance Imaging
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Nonparametric Nonuniformity
Normalization (N3)

Computing the filtered image:

Considered model:
— I(s)=J(s)*B(s)

. Correctiorl:
~ B(x)= B*(2X)
G fec
- 1(s)=J(s)*G(s)

Iterative process applied to different scales.
e Use B-Spline to smooth the final result.

=Y J O Introduction to Research in Magnetic Resonance Imaging




Brain Extraction Tool

 Method:

- Computes robust lower and upper intensity values.

- Estimate center-of-gravity using weighted intensity
values.

- Initialize a sphere composed of triangle mesh.
- Deform mesh until it fits image borders.

1M Introduction to Research in Magnetic Resonance Imaging
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Optimum Path Forest Clustering

e Qverview
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Optimum Path Forest Clustering

* Clustering

sho JO'SE DOs CAMPOS
IBGRAPI 1 6 Introduction to Research in Magnetic Resonance Imaging
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Optimum Path Forest Clustering

V.e W, are the sum of the

weights of intra and inter cluster
edges, respectively.
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Accuracy Metrics

D D: Image domain

O,: Ground-truth object pixels

O.: Segmentation object

pixels
™ TP: O, n O
TN: D = (O, U Oy)
FNN: |lerl|?i\|]lfp| FPN: |F13|ﬁ‘|/N| P 0,7 (0.0 Oy
FN: O,— (O, n O,)
. 2| TP . TP
dice : jaccard :
2|TP|+|FP|+|FN |TP|+|FP|+|FN|

S, JOSE DOS CAMPOS
7 — 4
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Summary

A.Image interpolation
B.Motion correction
C.Image registration



A. Image interpolation

Definition: Interpolation is used to finds intensity values between grid
points

It is essential for a variety of medical imaging processing, such as,
* image generation,
e compression or resampling,
e subpixel translation,
* elastic deformation or warping,
* magnification or minification
* geometrical correction
* image registration and proper volume visualization.

Image interpolation is a more consolidated issue and

the most commonly used interpolation technique are: nearest
neighbor, bilinear, bicubic, B-splines, lanczos2, discrete
wavelet transform and Kriging.



=
.
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A. Image interpolation

* Spline

* Sinc

* k-Space methods
Nearest Trilinear
Neighbour

https://www.fmrib.ox.ac.uk



A. Image interpolation - References

J. Ashburner and C. D. Good, “Spatial registration of images,” in Quantitative MRI of the Brain:
Measuring Changes Caused by Disease, P. Tofts, Ed. John Wiley & Sons, 2003, ch. 15, pp. 503-532.

T. M. Lehmann, C. Gonner, and K. Spitzer, “Survey: Interpolation methods in medical image
processing,” IEEE TRANSACTIONS ON MEDICAL IMAGING, vol. 18, no. 11, pp. 1049-1075, 1999.

E. H. W. Meijering, “Spline interpolation in medical imaging: comparison with other convolution-based
approaches,” Proceedings of EUSIPCO 2000, M. Gabbouj and P. Kuosmanen (eds.), vol. IV, pp. 1989-
1996, 2000.

A. Amanatiadis and |. Andreadis, “A survey on evaluation methods for image interpolation,”
Measurement Science and Technology, vol. 20, no. 10, p. 104015, 2009.



B. Motion correction

Patient may move the head during a run or between runs, resulting in
wrong spatial location.

-impossible to avoid movements as small as a few millimeters.
- It will dishevel or distort the image sequence.

The motion correction should be carried out co-registering each volume in
the sequence run acquisition to a reference volume.

The reference volume may be:

i) First volume in the sequence acquisition;

i) Middle volume in the sequence acquisition; or

iii) Average of all the volumes in the sequence acquisition prior to motion
correction.




B. Motion correction




B. Motion correction

Most commonly used interpolation technique are:
Earest neighbor,

* bilinear,

e Trilinear,

* bicubic,

* B-splines,

* lanczos?2,

* discrete

wavelet transform and Kriging [89].



C. Image registration

* Image Registration is the process of estimating
an optimal transformation between two
Images.

* Sometimes also known as “Spatial
Normalization”



C. Image registration

Applications
* fMRI Specific
— Motion Correction

— Correcting for Geometric Distortion in EPI

— Alignment of images obtained at different times or with
different imaging parameters

— Formation of Composite Functional Maps

 Other Applications
— Mapping of PET/SPECT to MR Images

— Atlas-based segmentation/brain stripping
— And many many many more!




C. Image registration

Components of the Image Registration Process
 Reference and Target datasets.
 Transformation model

 Cost Function
 Optimization Method




C. Image registration - Reference and Target datasets

e Common reference coordinate
system for reporting/describing

» Register all members of a
group to this space for group
Studies

e Original Talairach & Tournoux
coords based on one postmortem
Brain

 Now use standard images
based on non-linear group
average (MNI152)

 MNI is not quite Talairach



C. Image registration - Transformation Model

Transformation Model (FSL)
* Rigid
e Affine
* Non-linear




C. Image registration - Rigid Transformation

« Rotation(R) ;FH ;zzm *FH ’;H
 Translation(t)

* Similarity(scale)
cos(6) —sin(0)
sin(@) cos(0) |




5 C. Image registration - Rigid Transformation

6 DOF in 3D

e Includes:

- 3 Rotations

- 3 Translations

Used for
within-subject
registrations

https://www.fmrib.ox.ac.uk



Rotation
Translation
Scale
Shear

X

Yo

Argyropelecus offersi.

C. Image registration - Affine Transformation

all + a12

_021 + a22 _

S are preserved

! ! !
!

Sternopiyx diaphana.

X1

Y1

No more preservation of lengt
and angles

el line



http://www.comp.nus.edu.sg/~cs4243/lecture/register

C. Image registration - Affine Transformation

12 DOF in 3D

e Linear Transf.

e Includes:

- 3 Rotations

- 3 Translations

- 3 Scalings

- 3 Skews/Shears

Used for eddy current correction
and initialising non-linear
registration

https://www.fmrib.ox.ac.uk




More than 12 DOF
e Can be purely local

* Subject to constraints:
- Basis Functions

* e.g. B-Splines

- Regularisation

- Topology-preservation

Used for good quality between-
subject
registrations

https://www.fmrib.ox.ac.uk



C. Image registration - What do | use? (FSL)

Rigid body (6 DOF)
- within-subject motion

Non-linear (lots of DOF!)

- high-quality image (resolution, contrast) & same modality
of reference/template

- better with a non-linear template (e.g. MNI152 T1 2mm)

Affine (12 DOF)

- needed as a starting point for non-linear

- align to affine template, or using lower quality images, or
eddy current correction

More DOF is NOT always better (e.g. within-subject)

https://www.fmrib.ox.ac.uk




C. Image registration - Cost Function

Measures “goodness” of alignment
Seek the minimum value
Several main varieties

Examples: Least square, normalized correlation,
correlation ratio

https://www.fmrib.ox.ac.uk



% C. Image registration - Applicationn
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A) Multi-echo T2 input images. B) Computed T2 Relaxometry. C)

Fig. 1. Procedure for automatic estimation of hippocampal T2 relaxation time.
[llustration of the registration procedure of the T2 Relaxometry image (bottom) with an atlas (top). D) T2 Relaxometry image in the atlas common
space. E) Simplest methodology, based on the mask of the hippocampi. F) Experiment using three high probability regions mimicking the manual
procedure. G) tissues generated from brain pixel labeling. H) The resultant hippocampus mask composed only by gray matter. The T2 relaxation time
is given by the median intensity of the regions in Figures E), F) or H). Different colors in E) and H) are labels achieved applying distinct thresholding

values.
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Several neuroimaging studies of epilepsy require the nomalization precedure (warping of individual brain
images to @ common template space) in order to perform a proup study, Satisfactory nomnalization
algorithms are available for anatomically normal brains, however, this i not a solved problem for brains with
lesions or undergone surgery. Some previows works have shown that MRI normalization of these atvpical
brains, using different methods can dramatically affect partially or the whole final normalized brains
(Ripollés et al., Neurolmage 60, 2002, 1296-1306; Brett et al,, Neurolmage 14,2001, 486-500; Crinion et al,
Neurolmage 37, 2007, §66-875, 2007)

In this work, we sought te compare two popular methods of MRI T1 image normalization
*FSL
*SPM&/Dartel
Our patients were separated in 3 groups;
E’) Group A: § epilepsy patients that had undergone surgery
[7:',5 Group B: 9 epilepsy patients” candidates for surgery

E:> Group C: 9 healthy patients

Performance evaluation was quantified through variance per voxel and ANOVA fest.

- We have observed visually that SPMB/Dartel perform better than FSL the registration/nonnalization

process, that is, the first present less deformation comparing the images of the 3 groups

- Statistical analysis of intra- and inter-groups and different registration methods, also, shown that

SPM8/Dartel presented the smaller variance in all cases of comparison between methods (Table ).

Table: Average variance of the MR mormalized images of groups A, B and C, The variance of each
normalized patient image was calculated against Single Subject image. Normalized images were
obtained using FSLand SPM8/Dartel analysls package.

Groups SPMB/Dartel [
(variance) (variance)
Group € | 8 healthy patients) 1746,2 3658,5
Group B ( 9 candidates for surgery) 18811 4166,6
Group A (Undergone surgery— all 8 patients) 1995,0 41498
- Part of Group A - 3 patients undergone 26758 68152
right side surgery
- Part of Group A - 5 patients undergone 20916 3854,5
left side surgery

lepsy Congress 2013 Montreal - Abstract: A-577-0009-01248
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In this work, we observed superior and robust performance of DARTEL algorithm in our MRI data.

However, a larger number of patients would be desirable for more statistically significant results
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fMRI Image

v'Noninvasive technique used to study brain
activity

v'Do not use intravenous contrast

v Evaluates the oxygen consumption in the brain
areas activated

v The hemodynamic response function:
: Location

. Change Location - Brain Mapping



Brain Functional Areas

The motor and sensory cortexes and the association areas for each
Central sulcus

Motor Cortex =
Somatic motor ¥
association area

* PARIETAL LOBE

|l(:‘-ua:‘.t.-m:t:u'w Cortex N (\ * .

Olfactory Cortex T 8
'(\FRONTAL
LOBE! ju

LOBE

T

Auditory Cortex Lateral sulcus

Primary auditory cortex
TEMPORAL LOBE

Auditory association area

© 2011 Pearson Education, Inc.

~ OCCIPITAL |

Somatic sensory
association area

Source:: http://www2.highlands.edu/academics/divisions/scipe/biology/faculty/harnden/2121/notes/cns.htm

Sensory Cortex |
Visual Cortex ‘

Primary visual cortex

Visual association area
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Brain Functional Networks

A modern vision of the cortical networks for reading

Superior temporal
Precentral reglons

Supramarginal
Anterior rBﬂIOI‘I
insula Top-down attention

gyrus
&\H g -L"-n- \ and serial reading
Access to pronunciation |\ & WP L O\ Boihido partaba
, " » region
g - =1 L k)

and articulation

Angular gyrus

Middle temporal
region
Occipital
regions
Inferior frontal
region i :
Ventral occipito- Visual mF'UtS

* Anterior fusiform  temporal region
region

Anterior temporal Visual word form area
P (« the brain’s letterbox »)

Access to meaning

Source: Dehaene (2009)



Physiological correlates of brain electrical activity

E : )
metabolic response . rocrET
/ W ok ! glucose consumption _
| Vi o il i toradi h
electrical aCtIVIty P \ ! oxygen c:::nsumptlon ) autoradiography
- excitatory ' :
- inhibitory L ¥ -
- soma action potential | *, § haemOdynam[C ) H,"”O
b —  PET
A / response

i

sl NIRS

\ EEG - 1 blood flow
MEG - | blood volume T optical imaging
- | blood oxygenation
\ r T R

Source:: http://fsl.fmrib.ox.ac.uk/fslcourse/graduate/WebLearnArchive/2010-2011/Introduction%20to%20fMRI
%20_1st%20week%20course_/Intro_to_FSL_Dayl 2010.pdf .
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Magnetic Properties of Haemoglobin

Oxy-haemoglobin
Diamagnetic
(same as tissue)

Deoxy- haemoglobin
Paramagnetic

Ax=0.2 ppm

Source:: http://fsl.fmrib.ox.ac.uk/fslcourse/graduate/WebLearnArchive/2010-2011/Introduction%20to%20fMR1%20_1st%20week
%20course_/Intro_to_FSL_Day1_2010.pdf .
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BOLD Effect

Increased Neuronal

Activity @ =HbO:

capillary — Hbr

[ )]
arterioles ". bed
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Source:: http://fsl.fmrib.ox.ac.uk/fslcourse/graduate/WebLearnArchive/2010-2011/Introduction%20to%20fMR1%20_1st%20week
%20course_/Intro_to FSL_Dayl 2010.pdf



Experimental Design

A B A B A

(rest)  (activation) (rest) (activation) (rest)

0 10 20 30 40 50

time (TRs) m=ip

- Simple paradigm design:
- stimulus vs baseline
- constant stimulus “intensity”
- constant block lengths
- many repetitions: ABABA

* Need baseline (rest) condition to measure change

Source:: http://fsl.fmrib.ox.ac.uk/fslcourse/graduate/WebLearnArchive/2010-2011/Introduction%20to
%20fMRI1%20_1st%20week%20course_/Intro_to FSL_Dayl 2010.pdf




Stimulus to BOLD

(1) Neuronal (3) Haemodynamic fMRI BOLD
activity response response
(2) Neurovascular (4) Detection by
Stimulus ) coupling = = MR scanner
— =S - Belgddl ——
or modulation A
in background [ A
activity
- Excitatory activity - Metabolic signal - Blood flow - Magnetic field
and inhibitory activity unknown - Blood strenagth
- Anaesthetic influence - Anaesthetic oxygenation - TR, repetition
influence level time
- Blood volume - TE, echo time
- Haematocnt - Spin or gradient
echo EPI

TRENDS in Neurosciences

Source: Trend in Neuroscience P
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Activation Statistics

Functional images

fMRI ROI Time
Signal e Course
(% change)

T
il

Time Condition

Statistical Map

superimposed on
anatomical MRI image

Region of interest (ROI)

~ 5 min

Source: http://slideplayer.com/slide/4261788/ &
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Overview fMRI Data Processing

fMRI time-series kemnel Design matrix

| B LA R
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—| Smoothing [—| General Linear Model

Motion
correction
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Spatial
normalisation

Standard
template




Data Preprocessing

* Preprocessing have two primary goals

* to reverse displacements of the data in time or space that
may have occurred during acquisition

* to enhance the ability to detect spatially extended signals
within or across subjects.

[ Experimental Design ]
| | |
4 Preprocessing A Data Analysis
1 Slicetiming Localizing
I Reconstruction | * Cw:mm st
Maotion Correction,
Coaregisration & Conrectivity
Data Mormalization
Processing — e
Pipeline Smosthing Prediction
—_— R
Source: Parida (2013) —_—
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_ Distortion Correction

* fMRI data are distorted in space as a result of magnetic
field lines at air tissue interfaces.

* To correct for this spatial distortion, methods use a map of
the magnetic field

* |n most cases, this correction is performed by the scanning
system itself



Slice Acquisition Correction

In a typical fMRI sequence, each slice samples a slightly
different point in time

Slice-acquisition correction compensates for this staggered
order of acquisition by interpolating in-between time points

The correction works by calculating the signal that would
have been obtained if the slice had been acquired at the
closest TR

This preprocessing step is qwte Important for even-related
designs : '
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Temporal High-Pass Filtering

* The fMRI signal often show low-frequency drifts
caused by physiological noise as well as by
scanner-related noise

* these drifts reduce substantially the power of statistical
analysis invalidating event-related averaging

* The removal of low-frequency drifts is one of the
most important preprocessing steps and should be
always performed

* This preprocessing can be "dangerous* as condition-
related signals may be removed if correction is not
properly applied P
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Motion Correction

A common data preprocessing step is to correct for the effects
of motion by realigning the image of the brain obtained at
each point in time back to the first or median image

Most methods treat the brain as a rigid body and calculate the
Six possible movement parameters which minimize the
difference between the realigned brain and the brain in its
reference position

Motion correction of this kind does not completely remove the
effects of movement upon the fMRI signal

Statistical analysis of fMRI data often will consider the six
movement parameters measured during realignment to
account for changes in the signal within voxels that are
correlated with the movement of the head e,
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Spatial Normalization

* To test a hypothesis regarding a certain area of the brain
within a population spatial normalization is needed

* This is done by warping the anatomical structure of the brain of one
subject to match a template brain within a standard defined space

* An alternative to anatomical registration is functional
identification

* The approach is first to identify a region across subjects by its
functional responses to test other types of stimuli across subjects
within this area
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