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Summary

- Introduction to MRI

- MRI scanner

- NMR phenomenon

- Relaxation timesT1 and T2

- Image formation: Spin-echo technique (TR and TE)



Introduction to MRI

Typical magnetic field 1T a 4T     (1T= 10.000G   100.000x earth 
magnetic field). 
Eletrico motor:3000G (max). Supercondutor coils.

https://pancreaticcanceraction.org/about-pancreatic-
cancer/diagnosis/second-line-investigations/mri-scan/

http://london-imaging.co.uk/growing-use-mri-mental-
health/



MRI: acquisition - voxel (~ 1 mm3)



MRI modalities slices

Proton Density T1-weighted T2-weighted

Each modality depends on TR and TE – MRI scanner acquisition 
parameter 

http://www.bic.mni.mcgill.ca/brainweb/



Curiosity: NMR spectroscopy – macromolecules structure

http://www.mhhe.com/physsci/chemistry/
carey/student/olc/ch13nmr.html



NMR phenomenon

Nuclear
Magnetic

Resonance

1946 - NMR phenomenon was first 
observed iby Bloch and Purcell el al. 

1973 - first MR image was only 
obtained by P.C. Lautenbur in 1973



N: Spin nuclear

Electron:  spin ½
Proton: spin 1/2
Neutron: spin 1/2  (despite zero electric charge!!! Quantum 
phenomenon) http://www.chm.bris.ac.uk/pt/polymer/techniques.shtml

https://vam.anest.ufl.edu/simulations/nuclearmagneticresonance

http://www.chm.bris.ac.uk/pt/polymer/techniques.shtml
http://www.chm.bris.ac.uk/pt/polymer/techniques.shtml


N: Spin nuclear

• Criteria:
      Must have ODD number of protons or ODD number of neutrons.

A Primer of MRI
Journal of Magnetic Resonance Imaging, vol. 35, p. 10381054, 2012.
Plewes, Donald b. and Kucharczyk, Walter,



M: Magnetic Field
Magnets in a magnetic field

http://www.mhhe.com/physsci/chemistry/carey/student/olc/ch13nmr.html



M: Magnetic Field

http://www.mhhe.com/physsci/chemistry/carey/student/olc/ch13nmr.html



R: Resonance

Low 
energy
(paralel
To  Ho)

High 
energy
(antiparale
l to Ho)

E = 
hf

E = hf       -     resonance condition
E = k Ho



R: Resonance



Resonance

E = hf       -     condição de 
ressonância
E = k Ho



MRI  (pulsed RF)

https://pancreaticcanceraction.org/about-pancreatic-
cancer/diagnosis/second-line-investigations/mri-scan/



Block diagram of MRI scanner

http://www.starfighter.acornarcade.com/mysite/articles/aiessay.htm



Precession of Nuclear spin in a magnetic field



Net magnetization of nuclear spins in each voxel

voxel (~ 1 mm3)

Mo

Magnetic Resonance Imaging. Physical Principles and 
Applications
Paul Michael Walker MCU-PH, CNRS



Net magnetization after a RF pulse (excitation)

/2

Development of a Quality Assurance Strategy for Magnetic Resonance Imaging in Radiotherapy
Author: Kristina Sandgren, Umeå University Radiation Sciences Master’s Thesis in Engineering Physics, 2015



Net magnetization after a RF pulse 

Magnetic Resonance Imaging. Physical Principles and Applications
Paul Michael Walker MCU-PH, CNRS



Free Induction Decay

Fundamentals of NMR, THOMAS L. JAMES
Department of Pharmaceutical Chemistry, University of California



FID and relaxation time T2*

Magnetic Resonance Imaging. Physical Principles and Applications
Paul Michael Walker MCU-PH, CNRS



Logitudinal Relaxation time T1 (spin-lattice)

Magnetic Resonance Imaging. Physical Principles and Applications
Paul Michael Walker MCU-PH, CNRS



Net magnetization relaxation

https://mrimaster.com/



Transverse Relaxation time T2 (spin-spin)

Magnetic Resonance Imaging. Physical Principles and Applications
Paul Michael Walker MCU-PH, CNRS



Spin-echo (rotating frame)

Pulso RF  

 RF  pulse

http://pages.physics.cornell.edu/p510/G-7A_Pulsed_NMR_:_Spin_Echo



Spin-echo (TR and TE)

TR: Repetition Time
TE: Echo Time

http://www-mrsrl.stanford.edu/~brian/bloch/



Spin echo (TR andTE)

http://mriquestions.com/fse-parameters.html



T2

Magnetic Resonance Imaging. Physical Principles and Applications
Paul Michael Walker MCU-PH, CNRS



MRI intensity: PD,  T1- and T2-weighted image

Proton density: water and lipids

MRI constrast: Spin-echo equation

I: image intensity (pixel brightness)
N: proton density (tissue)
f(v): flux function (tissue)
TE: echo time (fixed at the machine)
TR: repetition time (fixed at the 
machine)
T1: longitudinal relaxation time (tissue)
T2: transversal (spin-spin)  relaxation 
time (tissue)



T1 and T2 values for tissues

T1 and T2 values at 
1.5 Tesla.

Tissue T1 (ms) T2 (ms) 

Muscle 870 47 

Liver 490 43 

Kidney 650 58 

Grey Matter 920 100 

White Matter 790 92 

Lung 830 80 

CSF 2,400 160 

https://en.wikibooks.org/wiki/Basic_Physics_of_Nuclear_Medicine



http://mriquestions.com/image-contrast-trte.html



T1- and T2-weighted Images

http://casemed.case.edu/clerkships/neurology/NeurLrngObjectives/MRI.htm



o  A long TR and short TE sequence is usually called Proton Density -weighted
o  A short TR and short TE sequence is usually called T1-weighted
o  A long TR and long TE sequence is usually called T2-weighted

- CSF: Cerebro-Spinal Fluid
https://en.wikibooks.org/wiki/Basic_Physics_of_Nuclear_Medicine



Image

http://en.wikibooks.org/wiki/Basic_Physics_of_Nuclear_Medicine



Imagem

http://en.wikibooks.org/wiki/Basic_Physics_of_Nuclear_Medicine



Image formation
K-space properties:
    - Center of k-space center corresponds to low spatial frequencies (structure 
of image) 
    -  Boundary of k-space corresponds to high spatial frequencies (details of 
image)

http://mriquestions.com/locations-in-k-space.html



1.5 tesla scanners often cost between $1 million and $1.5 million 
USD. 3.0 tesla scanners often cost between $2 million and $2.3 
million USD.

MRI:  800 a 1000 reais
CT (adomen) : 400 a 600 reais



Magnetic resonance angiography  - contrast with Gd
Author: Ofir Glazer, Bio-Medical Engineering Department, Tel-Aviv University, Israel. Part of M.Sc. final 
project, tutored by Dr. Hayit Greenspan.



Fig. 1. Patient 1 – MRI findings: (A) axial T1-weighted, (B) axial T2-weighted, (C) postcontrast axial T1-weighted and (D) 
postcontrast sagittal T1-weighted MRI. The tumour is composed of a moderately enhanced solid portion that has a soap 
bubble or spongy appearance (black arrows) and multiple cysts interfacing between the solid part of the tumour and the 
lateral ventricular wall. Spicules (white arrows) formed by the cyst wall appear to form a connection between the solid part of 
the tumour and the undulated lateral ventricular wall (arrowheads). (E) Susceptibility-weighted axial MRI showing multiple 
low-intensity dots that reflect calcification and vessels. (F) Magnetic resonance spectroscopy showing high choline peaks and 
low N-acetyl aspartate and myoinositol and/or glycine peaks.
Journal of Clinical Neuroscience Volume 19, Issue 5, May 2012, Pages 681–686



Nguyen T N et al. Neurology 2006;66:E30-E30
©2006 by Lippincott Williams & Wilkins

Figure. MRI T1-weighted (A), T1-weighted with gadolinium (B), T2-weighted (C), and susceptibility-weighted (D) 
sequences show hyperacute hemorrhages in the right frontal lobe and right parietal lobe (arrows). There is marked 
peripheral nodular gadolinium enhancement within the right frontal hemorrhage (B, arrow). The apparent diffusion 
coefficient map (E) shows hyperintensity within the right frontal hemorrhage (arrow) and hypointensity due to acute 
infarction in the left precentral gyrus (double arrow). CT scan (F) 5.5 hours following MRI shows enlargement of the right 
frontal hemorrhage and no change in size of the right parietal hemorrhage (arrows).

A) T1-weighted

C) T2-weighted

E) Diffusion 
coefficient map

F) CT

D) Susceptibulity

B) T1-weighted
With Gd



J Magn Reson Imaging. 2005 Jul;22(1):13-22.
Routine clinical brain MRI sequences for use at 3.0 Tesla.
Lu H1, Nagae-Poetscher LM, Golay X, Lin D, Pomper M, van Zijl PC.





MRI spectroscopy mode :nonalcoholic fatty liver disease 
(NAFLD)

http://www.radiology.ucsf.edu/apmri/home



Arq. Neuro-Psiquiatr. vol.66 no.2b São Paulo June 2008
doi: 10.1590/S0004-282X2008000300003  
 
Proton MR spectroscopy of the foramen of Monro region in patients with tuberous sclerosis complex

 
Arnolfo de Carvalho-NetoI; Isac BruckII; Sérgio A. AntoniukII; Edson MarchioriIII; Emerson L. GasparettoIII

IDepartment of Radiology, University of Parana, Curitiba PR, Brazil 
IIDepartment Neuropediatrics, University of Parana, Curitiba PR, Brazil 
IIIUniversity of Parana, Curitiba PR, Brazil, and Department of Radiology, University of Rio de Janeiro, Rio de Janeiro RJ, Brazil



fMRI (funcional MRI)

• T2 * per voxel is sensitive to the ratio of deoxygenated hemoglobin and oxygenated
• Increase in metabolic activity in the brain causes vasodilation and increased flow of oxygenated 

blood, T2 * and increases voxel intensity increases
• fMRI detects difference of 3%
• BOLD signal (Blood Oxygen Level-Dependent)
• oxygenated hemoglobin: diamagnetic
• deoxygenated hemoglobin: Paramagnetic

http://www.fmrib.ox.ac.uk/fmri_intro/brief.html



 E. Purcell, H. Torrey, and R. Pound, “Resonance absorption by 
nuclear
magnetic moments in a solid,” Physical Review, vol. 69, pp. 37–38,
1946.

P. C. LAUTERBUR, “Image formation by induced local interactions:
Examples employing nuclear magnetic resonance,” Nature, vol. 
242,
pp. 190–191, 1973.

Plewes, D. B. and Kucharczyk, W “ A Primer of MRI, Journal of 
Magnetic Resonance Imaging, vol. 35, p. 10381054, 2012.

Currie, S., Hoggard, N., Craven, I.J. Hadjivassiliou, M. and Wilkinson, 
I.D., Basic MR physics for physicians, Postgrad Medical Journal, vol. 
89, p. 209223, 2013.
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Magnetic Resonance Image 
Processing and Analysis

Fábio Cappabianco – Institute of Science and Technology, Federal University of São Paulo
fcappabianco@gmail.com



Introduction to Research in Magnetic Resonance Imaging

Outline

● MRI intensity regularization
– High-frequency noise filtering

– Intensity normalization

– Inhomogeneity effect removal

● MRI segmentation – brain imaging case study
– Skull stripping

– Tissue segmentation/classification

– Small structure segmentation
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Before we start ...

● For the exercises:
– Softwares:

● FSL - https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
● 3DSlicer - https://www.slicer.org/
● Freesurfer - https://surfer.nmr.mgh.harvard.edu/
● SPM - http://www.fil.ion.ucl.ac.uk/spm/
● BIAL - https://github.com/GIBIS-UNIFESP/BIAL 
● BrainSuite - http://brainsuite.org/

– Databases:
● BrainWeb - http://brainweb.bic.mni.mcgill.ca/brainweb/
● IBSR 18 - https://www.nitrc.org/projects/ibsr

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
https://www.slicer.org/
https://surfer.nmr.mgh.harvard.edu/
http://www.fil.ion.ucl.ac.uk/spm/
https://github.com/GIBIS-UNIFESP/BIAL
http://brainsuite.org/
http://brainweb.bic.mni.mcgill.ca/brainweb/
https://www.nitrc.org/projects/ibsr
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MRI Intensity Regularization
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High-frequency Noise Filtering

● In MRI → Rician distribution.
– PDF:

f ( x∣ν ,σ )=
x

σ
2 exp (−(x

2+ν2)

2σ2 ) I 0 ( x σσ2 )

I0 ( x )=∑
m=0

∞ 1
m!Γ(m+1) ( x2 )

2m

Γ( x)=(x−1)!

Image from:https://en.wikipedia.org/wiki/Rice_distribution#/media/File:Rice_distributiona_PDF.png
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High-frequency Noise Filtering

WeakWeak
filteringfiltering

StrongStrong
filteringfiltering
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High-frequency Noise Filtering

● 1st generation of filters: isotropics
– e.g. Mean, median, gaussian

● 2nd generation of filters: local anisotropics
– e.g. diffusion, bilateral [Smith 1997]

● 3rd generation of filters: non-local anisotropics
– e.g. non-local means [Tristan-Vega 2012], BM3D, 

PLOW
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High-frequency Noise Filtering

● Isotropic filters:
– Same operation over all pixels.

– Simplest → convolution.

– Fastest → O(n*a)

– Worst → borders also blurred.
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High-frequency Noise Filtering

● Local anisotropic filters:
– Adaptive filter, depending on pixel adjacency 

contents.

– Relatively simple, mostly iterative process.

– Reasonably fast → O(n*a*i)

– Much better results – stronger edges preserved.
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High-frequency Noise Filtering

● Non-local anisotropic filters:
– Tries to get more information from adjacencies  with similar 

intensities or patterns of the filtered pixel.

– Very complex → requires clustering pixel patches.

– Very slow → O(nα*a*i).

– Best results → Estimates noise and removes it.

● Newest: 
http://www.nitrc.org/snapshots.php?group_id=518
– [Tristan-Vega 2012]

– Compile with itk and add as module of 3DSlicer.

http://www.nitrc.org/snapshots.php?group_id=518
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High-frequency Noise Filtering

● Exercise:
– Open 3D slicer

● Run gradient anisotropic filtering over t1_pn5_rf40.

– Open FSL
● Run Susan filtering over t1_pn5_rf40.

– Compare results and execution time.
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High-frequency Noise Filtering

● Evaluation
– PSNR, MSE → global.

– SSIM and variations such as MSSIM. [Wang 2004]→ 
structural.

● Today's use...
– MRI is becoming almost noise free.

● 7 Tesla images are nice and clear … in some ways!

– Even supervised training with patches from multiple images 
was tested

● In medical images may generate incorrect results.
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Intensity Normalization

● Used to standardize 
intensity range and 
distribution of a set of 
images.

● Based on landmarks.
– Normally, just mean 

and quartiles are 
enough.

– [Zhuge 2006]
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Intensity Normalization

● Two steps method
– 1st – training: find landmarks in the histogram of 

input image.

– 2nd – transformation: find landmarks in target 
images and map them to the ones of the training 
image.
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Intensity Normalization

● Consequences:
– Improves inhomogeneity correction.

– May improve segmentation process based on 
expected intensity ranges.
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Intensity Inhomogeneity Correction

● Consists of a multiplicative low-frequency 
noise.
–

● Depends on:
– Magnetic field or scanner features

– Scanned subject

I (s)= Î (s)∗B(s)+η(s)
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Intensity Inhomogeneity Correction

● Affects:
– Segmentation process

– Statistic measurements

– Human interpretation
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Intensity Inhomogeneity Correction

● General methods:
– N3 [Sled 1998], N4 [Tustison 2010]

● Used over any kind of images.

● Brain specific methods:
– BFC, FAST (also segments tissues)

● Used over skull stripped brain images.
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Intensity Inhomogeneity Correction

● Exercise
– Open 3D slicer

● Run N4itk inhomogeneity correction over t1_pn5_rf40.
● Run N4itk inhomogeneity correction over t1_pn5_rf40 

denoised.
● Run gradient anisotropic filtering over t1_pn5_rf40 

unbiased.

– Compare results.
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Intensity Inhomogeneity Correction

● Evaluation:
– Using phantom.

– Post-segmentation results.

● Results:
– Even generic methods work better over mask.

– 7T images have even greater inhomogeneity.

– Not improved since N4 [Tustison 2010]. 
● Not a huge improvement since N3 from [Sled 1997]!!!
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MRI Segmentation

● Why?
– Improved visualization.

– Statistical analysis.

– fMRI.

– 3D modeling.
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Skull Stripping

● Ill posed problem.
– Extract everything that 

does not belong to the 
brain.

– What about CSF?

– Optical nerve?

– Where does the brain 
ends?
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Skull Stripping

● Methods:
– Surface fitting: 

● BET from FSL [Smith 2002].
● BSE from BrainSuite.

– Region growing:
● Hibrid watershed from Freesurfer. [Ségonne 2004]

– Mixed histogram matching:
● SPM (also segments tissues)
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Skull Stripping

● Exercise
– Open FSL

● Run bet over t1_pn5_rf40.
● Run bet over t1_pn5_rf40 denoised and unbiased.
● Run bet with COG correction over t1_pn5_rf40 denoised 

and unbiased.

– Compare results
● Inhomogeneity correction effects [Miranda 2013]
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Skull Stripping

● Evaluation:
– Compare to manual segmentation. [Fennema‐

Notestine 2006]
● Still, depends on human perception or goal application.

● Open questions:
– No method generates perfect segmentation.

– Depends on inhomogeneity correction for high 
magnetic field MRI [Cappabianco 2012].

– Harder for pathological cases.
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Tissue Segmentation

● Definition:
– Label pixels into GM, WM, and CSF.

● Goal:
– Allow quantization, analysis, fMRI studies.

● Issues:
– What about partial volume pixels?
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Tissue Segmentation

● Methods:
– OPF clustering

– Gaussian mixture

– Markov random fields 
[Zhang 2001]

– K-means
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Tissue Segmentation

● Exercise
– Open FSL

● Run FAST with partial volume option

– Run c-means

– Run OPF clustering

● Compare results
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Tissue Segmentation

● Evaluation:
– Area comparison metrics:

● Dice, Jaccard, Kappa.

– Parameter evaluation metrics:
● ROC curves. [Cappabianco 2012b]

● Open problems:
– How to generate the ground-truth?

– Manual or semi-automatic segmentation is still impossible 
today.

– Evaluation without ground-truth [Boiux 07].
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Small Structure Segmentation

● Segmentation of sub-cortical or cortical 
structures.
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Small Structure Segmentation

● User iteration types
– Automatic

– Manual

– Semi-automatic

● Implementation types
– Region growing

– Edge delineation
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Other operations

● Pose estimation.
● Brain alignment.
● Surface extraction.
● Hemisphere symmetry analysis
● Registration
● …
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Extras
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Anisotropic Diffusion Filtering

● Iterative process simulating thermal energy flow.

– Is
t – intensity of pixel s in instant t 

– λ – contant related to diffusion rate

– ηs – pixels adjacent to s

– ΔIs,p
t or x – magnitude of intensity directional gradient from s 

to p

– g( ) – edge stopping function
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Anisotropic Diffusion Filtering

Let γ=λ/|η
s
|

●  Edge stopping functions:

[Black 1998]
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Bilateral Filter

● Goal: average the intensity of pixels based on 
intensity and spatial proximity
–

● Wp is a factor of normalization.

● Gx are Gaussian functions.

BF [ I (p)]=
1
W p

∑
q∈Adj

Gσs
(‖p−q‖)Gσr

(|I (p)−I (q)|) I (q)
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Non-local Means

● Same idea as bilateral filter, but use information 
from other image locations.

● Use patches to compare similar image 
locations.

● Estimate intensity distance function based on 
N-Dimensional vector, where N depends on the 
patch size.
– NLM [ I ( p)]=

1
W p

∑
q∈ Adj

Gσ s
(‖p−q‖)Gσ r

(‖Adj( p)−Adj(q)‖) I (q)
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MSSIM

● Mean structural similarity index.
–

● Compares:
– Luminance

●

– Contrast
●

– Structure
●

– MSSIM → Mean value of SSIM over local windows.

l(x , y )=
2μ xμ y+C1

μ x
2+μ y

2+C 1

c (x , y )=
2σ xσ y+C2

σ x
2+σ y

2+C 2

s(x , y )=
σ xy+C3

σxσ y+C 3

SSIM (x , y)=[l(x , y)]α⋅[c (x , y)]β⋅[s(x , y)]γ
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Nonparametric Nonuniformity
Normalization (N3)

● Find a smooth, slowly varying, multiplicative field which maximizes 
the frequency the input signal.
– Unknown frequency/distribution

– Large search space.

– Hard to estimate related measures (e.g. Entropy)

● Strategy:
– Sharpening input signal.

– Estimate true signal.

● Assumptions:
– Bias has unimodal Gaussian distribution.

– Zero noise.



Introduction to Research in Magnetic Resonance Imaging

Nonparametric Nonuniformity
Normalization (N3)

● Computing the filtered image:
● Considered model:

–

● Correction:
–

–

● Iterative process applied to different scales.
● Use B-Spline to smooth the final result.

I (s)=J (s)∗B (s)

~G (x)=
~B*

(x)

|~B (x)|
2
+C2

~I (s)=~J (s)∗~G (s)
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Brain Extraction Tool

● Method:
– Computes robust lower and upper intensity values.

– Estimate center-of-gravity using weighted intensity 
values.

– Initialize a sphere composed of triangle mesh.

– Deform mesh until it fits image borders.
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Optimum Path Forest Clustering

Brain

Tissues

Sampling (0.01%)

OPF Clustering

Label propagation

Majority vote

● Overview
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Optimum Path Forest Clustering

● Clustering Sample (0,01%)

Best clustering

1 nearest neighbor

PDF estimation

Optimum-path forest

2 nearest neighbors

PDF estimation

Optimum-path forest

k nearest neighbors

PDF estimation

Optimum-path forest

Select best forest
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Optimum Path Forest Clustering

C k =∑
i=1

c V i

W iV i

,
   Vi e Wi  are the sum of the 

weights of intra and inter cluster 
edges, respectively.

             k=2, c=3                         k=3, c=2
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Accuracy Metrics
D: Image domain

Og: Ground-truth object pixels

Os: Segmentation object 
pixels

TP: Og ∩ Os

TN: D − (Og  O∪ s)

FP: Os − (Os ∩ Og)

FN: Og − (Os ∩ Og)

D

FN TP FP

O
g

O
s

TN

FPN :
|FP|

|FP|+|VN|
FNN :

|FN|
|FN|+|VP|

dice :
2|TP|

2|TP|+|FP|+|FN|
jaccard :

|TP|
|TP|+|FP|+|FN|
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A.Image interpolation
B.Motion correction
C.Image registration

Summary



A. Image interpolation

Definition: Interpolation is used to finds intensity values between grid 
points

It is essential for a variety of medical imaging processing, such as, 
• image generation, 
• compression or resampling, 
• subpixel translation, 
• elastic deformation or warping,
• magnification or minification
• geometrical correction
• image registration and proper volume visualization.

Image interpolation is a more consolidated issue and
the most commonly used interpolation technique are: nearest
neighbor, bilinear, bicubic, B-splines, lanczos2, discrete
wavelet transform and Kriging.



A. Image interpolation

TrilinearNearest 
Neighbour

• Spline
• Sinc
• k-Space methods

https://www.fmrib.ox.ac.uk



A. Image interpolation - References
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B. Motion correction

Patient may move the head during a run or between runs, resulting in 
wrong spatial location. 

-impossible to avoid movements as small as a few millimeters. 
- It will dishevel or distort the image sequence.

The motion correction should be carried out co-registering each volume in 
the sequence run acquisition to a reference volume. 

The reference volume may be: 
i) First volume in the sequence acquisition; 
ii) Middle volume in the sequence acquisition; or 
iii) Average of all the volumes in the sequence acquisition prior to motion 
correction. 



B. Motion correction

Time

https://www.fmrib.ox.ac.uk



Most commonly used interpolation technique are: 
• Earest neighbor, 
• bilinear, 
• Trilinear,
• bicubic, 
• B-splines, 
• lanczos2, 
• discrete
• wavelet transform and Kriging [89].

B. Motion correction



C. Image registration

• Image Registration is the process of estimating 
an optimal transformation between two 
images.

• Sometimes also known as “Spatial 
Normalization”



C. Image registration

Applications
• fMRI Specific

– Motion Correction
– Correcting for Geometric Distortion in EPI
– Alignment of images obtained at different times or with 

different imaging parameters
– Formation of Composite Functional Maps

• Other Applications
– Mapping of PET/SPECT to MR Images
– Atlas-based segmentation/brain stripping
– And many many many more!



C. Image registration

Components of the Image Registration Process
• Reference and Target datasets.
• Transformation model
• Cost Function
• Optimization Method



C. Image registration - Reference and Target datasets

• Common reference coordinate
system for reporting/describing

• Register all members of a
group to this space for group
Studies

• Original Talairach & Tournoux
coords based on one postmortem
Brain

• Now use standard images
based on non-linear group
average (MNI152)

• MNI is not quite Talairach



C. Image registration - Transformation Model

Transformation Model (FSL)
• Rigid 
• Affine
• Non-linear



C. Image registration - Rigid Transformation

• Rotation(R)
• Translation(t)
• Similarity(scale)
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6 DOF in 3D
• Includes:
– 3 Rotations
– 3 Translations

Used for
within-subject
registrations

C. Image registration - Rigid Transformation

https://www.fmrib.ox.ac.uk



C. Image registration - Affine Transformation

• Rotation
• Translation
• Scale
• Shear

No more preservation of lengths 
and angles

Parallel lines are preserved
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C. Image registration - Affine Transformation

12 DOF in 3D
• Linear Transf.
• Includes:
– 3 Rotations
– 3 Translations
– 3 Scalings
– 3 Skews/Shears

Used for eddy current correction
and initialising non-linear 
registration

https://www.fmrib.ox.ac.uk



C. Image registration – non linear

More than 12 DOF
• Can be purely local
• Subject to constraints:
– Basis Functions
• e.g. B-Splines
– Regularisation
– Topology-preservation

Used for good quality between-
subject
registrations

https://www.fmrib.ox.ac.uk



Rigid body (6 DOF)
- within-subject motion

Non-linear (lots of DOF!)
- high-quality image (resolution, contrast) & same modality
of reference/template
- better with a non-linear template (e.g. MNI152_T1_2mm)
Affine (12 DOF)
- needed as a starting point for non-linear
- align to affine template, or using lower quality images, or
eddy current correction

More DOF is NOT always better (e.g. within-subject)

C. Image registration – What do I use? (FSL)

https://www.fmrib.ox.ac.uk



C. Image registration - Cost Function

Measures “goodness” of alignment
Seek the minimum value

Several main varieties

Examples: Least square, normalized correlation, 
correlation ratio

https://www.fmrib.ox.ac.uk



C. Image registration - Applicationn

https://www.fmrib.ox.ac.uk



C. Image registration



C. Image registration
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fMRI Image

Noninvasive technique used to study brain 
activity

Do not use intravenous contrast

Evaluates the oxygen consumption in the brain 
areas activated

The hemodynamic response function:

•  Location

• Change Location - Brain Mapping

https://br.pinterest.com/pin/465418942711773729/



Brain Functional Areas

Source:: http://www2.highlands.edu/academics/divisions/scipe/biology/faculty/harnden/2121/notes/cns.htm



Brain Functional Networks

Dehaene (2009)

Source: Dehaene (2009)



Physiological correlates of brain electrical activity

Source:: http://fsl.fmrib.ox.ac.uk/fslcourse/graduate/WebLearnArchive/2010-2011/Introduction%20to%20fMRI
%20_1st%20week%20course_/Intro_to_FSL_Day1_2010.pdf



Magnetic Properties of Haemoglobin 

Oxy-haemoglobin 

Diamagnetic 

(same as tissue) 

Deoxy- haemoglobin 

Paramagnetic 

Δχ≈0.2 ppm 
Source:: http://fsl.fmrib.ox.ac.uk/fslcourse/graduate/WebLearnArchive/2010-2011/Introduction%20to%20fMRI%20_1st%20week
%20course_/Intro_to_FSL_Day1_2010.pdf



BOLD Effect

Source:: http://fsl.fmrib.ox.ac.uk/fslcourse/graduate/WebLearnArchive/2010-2011/Introduction%20to%20fMRI%20_1st%20week
%20course_/Intro_to_FSL_Day1_2010.pdf



Experimental Design

Source:: http://fsl.fmrib.ox.ac.uk/fslcourse/graduate/WebLearnArchive/2010-2011/Introduction%20to
%20fMRI%20_1st%20week%20course_/Intro_to_FSL_Day1_2010.pdf



Stimulus to BOLD

Source: Trend in Neuroscience



Activation Statistics

Source: http://slideplayer.com/slide/4261788/



Overview fMRI Data Processing

Source: http://www.cs.ucf.edu/~bagci/teaching/mic16/lec2122.pdf



Data Preprocessing

 Preprocessing have two primary goals
 to reverse displacements of the data in time or space that 

may have occurred during acquisition

 to enhance the ability to detect spatially extended signals 
within or across subjects.

Source: Parida (2013)



Distortion Correction

 fMRI data are distorted in space as a result of magnetic 
field lines at air tissue interfaces. 

 To correct for this spatial distortion, methods use a map of 
the magnetic field

 In most cases, this correction is performed by the scanning 
system itself 

Source: http://andysbrainblog.blogspot.com.br/



Slice Acquisition Correction
 In a typical fMRI sequence, each slice samples a slightly 

different point in time 

 Slice-acquisition correction compensates for this staggered 
order of acquisition by interpolating in-between time points

 The correction works by calculating the signal that would 
have been obtained if the slice had been acquired at the 
closest TR 

 This preprocessing step is quite important for even-related 
designs

Source: http://www.brainvoyager.com/Preprocessing/SliceScanTimeCorrection.html



Temporal High-Pass Filtering

 The fMRI signal often show low-frequency drifts 
caused by physiological noise as well as by 
scanner-related noise
 these drifts reduce substantially the power of statistical 

analysis invalidating event-related averaging

 The removal of low-frequency drifts is one of the 
most important preprocessing steps and should be 
always performed
 This preprocessing can be "dangerous“ as condition-

related signals may be removed if correction is not 
properly applied



Motion Correction
 A common data preprocessing step is to correct for the effects 

of motion by realigning the image of the brain obtained at 
each point in time back to the first or median image

 Most methods treat the brain as a rigid body and calculate the 
six possible movement parameters which minimize the 
difference between the realigned brain and the brain in its 
reference position

 Motion correction of this kind does not completely remove the 
effects of movement upon the fMRI signal

 Statistical analysis of fMRI data often will consider the six 
movement parameters measured during realignment to 
account for changes in the signal within voxels that are 
correlated with the movement of the head



Spatial Normalization
 To test a hypothesis regarding a certain area of the brain 

within a population spatial normalization is needed

 This is done by warping the anatomical structure of the brain of one 
subject to match a template brain within a standard defined space

 An alternative to anatomical registration is functional 
identification

 The approach is first to identify a region across subjects by its 
functional responses to test other types of stimuli across subjects 
within this area

Source: http://stnava.github.io/ANTs/
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