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Introduction

Introduction

m − dimensional m′ − dimensional

m′ << m
⇒ Linear Dimensionality Reduction

⇒ Multilinear Dimensionality Reduction
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Introduction

Introduction

Linear Techniques:PCA

Ppca = arg min
P

∑N
i=1 ||P.Im′ .PT .x̃i − x̃i ||2.

1 Consider a gray scale m1 ×m2 image as a high dimensional vector in
<m space, where m = m1 ·m2.

2 x = 1
N

∑N
i=1 xi .

3 x̃i = xi − x .

4 S =
∑N

i=1 x̃i .x̃
T
i .

5 PT SP = Λ.
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Introduction

Introduction
Details about PCA.

y = PT x,

PIm′y = PIm′P
T x,

xR = PIm′y =
m′∑

j=1

yj pj ,

Image I ∈ Rm1×m2 then:
pj ∈ Rm1·m2 .
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Introduction

Naive Multiresolution using PCA.
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Introduction

Limitations of PCA.

Dimension of rows and column spaces in PCA system

Dimensionality reduction means only truncate expression:

x =
m∑

j=1

yj pj ,

Dimension of covariance matrix S may be high

Small sample size problem:

We do not need to decompose S
Limited number of dimensions
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Introduction

Multidimensional Image Data Representation

Figure: Samples from FEI database. http://fei.edu.br/∼cet/facedatabase.html
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Introduction

Introduction

Multiliner Techniques: Tensor Representation

Generalization of linear technique to
dimensionality reduction.

Generalized matrix for data representation:
named tensor.

Multilinear techniques as: Images in gray
scale: third or-
der tensor

1 Multilinear Principal Components Analysis
(MPCA)[Lu et al., 2008].

2 MPCA variants [Lu et al., 2009, Panagakis et al., 2010].
3 Concurrent Subspace Analysis (CSA) [Xu et al., 2008]
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Introduction

Applications for Multiliner Techniques

Face transfer: use one face to animate another one
[Vlasic et al., 2005],

Face recognition/reconstruction under multiple viewpoints
[Filisbino et al., 2013b, Jia and Gong, 2005],

Video content representation and retrieval
[Zhou et al., 2012, Liu et al., 2008],

Gait recognition [Lu et al., 2008],

Visualization and computer graphics [Pajarola et al., 2013].
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Introduction

Applications: Face transfer: use one face to animate
another one

Figure: Pose, identity, expressions, visemes (speech-related mouth articulations).
Source [Vlasic et al., 2005]
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Introduction

Applications: Face reconstruction under multiple
viewpoints

Figure: (a) Low-resolution 14× 9. (b)-(f) Reconstruction in 56× 36. (g)-(k)
Ground truth. (source [Jia and Gong, 2005])
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Introduction

Applications: Video content representation and retrieval

Figure: Find clips that are identical in content to a query (source
[Zhou et al., 2012])
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Introduction

Applications: Gait Recognition

Figure: Third-order tensor representing a gait silhouette sequence (source
[Lu et al., 2008]).
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Introduction

Applications: Multiresolution Volume Visualization

Figure: Multiscale tensor reconstruction for visualization (source
[Suter et al., 2011])
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Dimensionality Reduction in Tensor Spaces

Tensor Product Spaces

Vector spaces V1 and V2; dim (V1) = n and dim (V2) = m,

Basis: {e1
1, e

2
1, e

3
1, ..., e

n
1} and {e1

2, e
2
2, e

3
2, ..., e

m
2 },

Tensor product V1⊗V2:

1 Dimension:
dim (V1⊗V2) = n.m, (1)

2 Basis:
V1⊗V2

= span
{

ei
1 ⊗ ej

2; 1 ≤ i ≤ n, 1 ≤ j ≤ m
}
, (2)

3 Given v =
∑n

i=1 vi e
i
1 and u =

∑m
j=1 uj e

j
2:

v ⊗ u =
n∑

i=1

m∑
j=1

vi uj e
i
1⊗ej

2. (3)
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Dimensionality Reduction in Tensor Spaces

Generalizing Tensor Product Spaces

Given V1,V2, . . . ,Vn, with dim (Vi ) = mi , and {e1
i , e

2
i , ..., e

mi
i } a

basis for Vi , then:
V1⊗V2 ⊗ . . .⊗ Vn

= span
{

ei1
1 ⊗ ei2

2 ⊗ . . .⊗ ein
n ; eik

k ∈ Vk

}
, (4)

A tensor X of order n is an element X ∈ V1⊗V2 ⊗ . . .⊗ Vn:

X =
∑

i1,i2,···,in

Xi1,i2,···,in ei1
1⊗ei2

2⊗ · · · ⊗ein
n . (5)
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Dimensionality Reduction in Tensor Spaces

Changing Tensor Representation

Let Vi = Rmi and new basis:

B̃ =
{

ẽi1
1⊗ẽi2

2⊗ · · · ⊗ẽin
n , ẽik

k ∈ Rmk

}
, (6)

Basis change matrices Rk ∈ Rmk×mk , defined by:

eik
k =

mk∑
jk =1

Rk
ik jk

ẽjk
k , (7)

where k = 1, 2, · · ·, n and ik = 1, 2, · · ·,mk .

New tensor representation:

X =
∑

j1,j2,···,jn

X̃j1,j2,···,jn ẽj1
1⊗ẽj2

2 · · · ⊗ẽjn
n , (8)

with:
X̃j1,j2,···,jn =

∑
i1,i2,···,in

Xi1,i2,···,in R1
i1j1R2

i2j2 . . . .R
n
injn .
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Dimensionality Reduction in Tensor Spaces

Dimensionality Reduction in Tensor Spaces

Projection matrices Uk ∈ Rmk×m′k , as follows:

Uk
ik jk

= Rk
ik jk
, ik = 1, 2, · · ·,mk ; jk = 1, 2, · · ·,m′k , (9)

with k = 1, 2, · · ·, n, m′k ≤ mk .

Reduced representation:

Y =

m′1,···,m′n∑
j1,j2,···,jn=1

Yj1,j2,···,jn ẽj1
1⊗ẽj2

2 · · · ⊗ẽjn
n , (10)

where:

Yj1,j2,···,jn =

m1,···,mn∑
i1,i2,···,in=1

Xi1,i2,···,in U1
i1j1U2

i2j2 . . .U
n
injn . (11)
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Dimensionality Reduction in Tensor Spaces

Tensor Product Formalism

Advantage: clarify tensor operations

Disadvantage: uncomfortable expressions. Example:

Y =

m′1,···,m′n∑
j1,j2,···,jn=1

Yj1,j2,···,jn ẽj1
1⊗ẽj2

2 · · · ⊗ẽjn
n , (12)

Solution: Generalized matrix approach:

Y = [Yj1,j2,···,jn ]m′1,···,m′nj1,j2,···,jn=1 (13)

Multilinear functions/algebra and generalized matrices
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Dimensionality Reduction in Tensor Spaces

Generalized Matrix Approach

A tensor X in expression (5) is just a generalized matrix
X ∈ Rm1×m2×...×mn ,

The mode-k product of tensor X ∈ Rm1×m2×...×mn with the matrix
A ∈ Rm′k×mk is given by:

(X×k A)i1,...,ik−1,i ,ik+1,...,in

=

mk∑
j=1

Xi1,···,.ik−1,j ,ik+1,···in Ai ,j , i = 1, 2, ...,m′k . (14)
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Dimensionality Reduction in Tensor Spaces

Generalized Matrix Approach

Dimensionality Reduction: We can compute expression (11) as:

Yj1,j2,···,jn =
(

X×1 U1T ×2 U2T
...×n UnT

)
j1,j2,···,jn

, (15)

or, in a compact form [Filisbino et al., 2013a]:

Y = X×1 U1T ×2 U2T
...×n UnT

. (16)

Reconstruction:

XR = Y ×1 U1...×n Un, (17)

XR = X×1 U1U1T

...×n UnUnT

, (18)
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Dimensionality Reduction in Tensor Spaces

Multilinear Spaces: Definitions

⇒ A tensor of order n is just a generalized matrix X ∈ Rm1×m2×...×mn .

Then:

1 There is an isomorphism between Rm1×m2×...×mn and Rm1·m2···mn .

2 The internal product between two tensors X ∈ Rm1×m2×...×mn and
Y ∈ Rm1×m2×...×mn is defined by:

〈X,Y〉 =

m1,...,mn∑
i1=1,...,in=1

Xi1,..,in Yi1,..,in

3 The Frobenius norm of a tensor is given by the expression:
‖ X ‖=

√
〈X,X〉, and the distance between tensors X and Y is

computed by:
D(X,Y) =‖ X− Y ‖ .
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Dimensionality Reduction in Tensor Spaces

Multilinear Spaces: Terminology

1 Tensor of order n;
2 Mode k
3 Tensor components

ẽj1
1⊗ẽj2

2 · · · ⊗ẽjn
n (19)

4 Core Tensor Y:
XR = Y ×1 U1...×n Un, (20)

5 Tensor Fields
6 Multilinear versus Tensor
7 Component space: Vi in expression

V1⊗V2 ⊗ . . .⊗ Vn

or Rmi in expression

Rm1⊗Rm2 ⊗ . . .⊗ Rmn ≡ Rm1×m2×...×mn
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Dimensionality Reduction in Tensor Spaces

Multilinear Dimensionality Reduction

Original image:
Rm1×m2×m3

Projected
images:
Rm′

1×m′
2×m′

3

Reconstruction visual-
ization: Rm1×m2×m3

Problem: Optimality criteria to seek for suitable matrices U1, U2,...,Un.
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Subspace Learning in Tensor Spaces

Concurrent Subspace Analysis (CSA)

Database: D = {Xi ∈ Rm1×m2×...×mn , i = 1, 2, ...,N}
Least square error minimization criterium:

(U j |nj=1) = arg min
U j |nj=1

N∑
i=1

||Xi ×1 U1U1T
...×n UnUnT − Xi ||2

We can re-write CSA problem as follows:

P? = arg min
P

N∑
i=1

∥∥∥PPT xv
i − xv

i

∥∥∥2
, (21)

subject to :

P = Un ⊗ Un−1 ⊗ ...⊗ U1, (22)

so, CSA is a constrained version of PCA [Filisbino et al., 2013a].
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Subspace Learning in Tensor Spaces

Analysis of Constrained PCA

Simplified Version:

P? = arg min
P

N∑
i=1

∥∥∥PImPT xv
i − xv

i

∥∥∥2
, (23)

subject to :

P = C ⊗ D, (24)

A simple manipulation shows that we must maximize
[Filisbino et al., 2013a]:

J̃m = Tr
[
ImPT RP

]
,
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Subspace Learning in Tensor Spaces

Analysis of Constrained PCA

Lagrange multipliers:

J̃m = Tr
[
Im (C ⊗ D)T R (C ⊗ D)

]
+Tr

[
Im
(

I − (C ⊗ D)T (C ⊗ D)
)

M
]
,

Gateux derivative respect to the C [Filisbino et al., 2013a]:

lim
τ→0

J̃m (C + τH)− J̃m (C )

τ
= 0,

If C ∈ Rs×s :
Nequations = s2 + s + 1,

equations against 2s2 variables
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Subspace Learning in Tensor Spaces

Mode-k Flattening and CSA

Figure: Mode-k Flattening to convert tensor into matrix
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Subspace Learning in Tensor Spaces

CSA Fundamental Theorem

Theorem

If (U1, ...,Uk−1,Uk+1, ...,Un) are known then the matrix Uk ideal is
composed by the m′k principal eigenvectors of the covariance matrix

C (k) =
N∑

i=1

X k
i(k)X kT

i(k),

where X k
i(k) is the matrix generated through the mode-k flattening of the

Xk
i ; that is:

X k
i(k) ⇐=k Xk

i ,

and
Xk

i = Xi ×1 U1T
...×k−1 Uk−1T ×k+1 Uk+1T

...×n UnT
.
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Subspace Learning in Tensor Spaces

Multilinear Principal Component Analysis (MPCA)

Let us consider a database:

D =
{

Xi ∈ Rm1×m2×...×mn , i = 1, 2, ...,N
}
. (25)

Variance maximization [Lu et al., 2008]:

(U j |nj=1) = arg max
U j |nj=1

1

N

N∑
i=1

||Yi − Y||2, (26)

where Yi is given by expression (16) and Y is the mean tensor
computed by:

Y =
1

N

N∑
i=1

Yi . (27)
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Subspace Learning in Tensor Spaces

Multilinear Principal Component Analysis

Theorem: Let Uk ∈ Rmk×m′k i = 1, 2, . . . , n, be the solution to (26).
Then, given the projection matrices U1, ...,Uk−1,Uk+1, ...,Un, the
matrix Uk consists of the m′k principal eigenvectors of the matrix:

Φ(k) =
N∑

i=1

(Xi(k) − X (k))UΦ(k) .UT
Φ(k) .(Xi(k) − X (k))T , (28)

where Xi(k) and X (k) are the mode-k flattening of sample tensor Xi

and of the global mean X , respectively, and:

UΦ(k) = Uk+1 ⊗ Uk+2 ⊗ ...⊗ Un ⊗ U1 ⊗ U2 ⊗ ...⊗ Uk−1. (29)
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Subspace Learning in Tensor Spaces

Proof of MPCA Theorem [Lu et al., 2008]

Properties: ||X|| = ||X(k)||, ||A||2 = trace(AAT ) and, if

S = X×1 U1 ×2 U2...×n Un then S(k) = Uk X(k)(UΦ(k))T , where UΦ(k) is
given by (29),

Ψ =
N∑

i=1

||Yi − Y||2 =
N∑

i=1

||
(
Xi − X

)
×1 U1T ×2 U2T

...×n UnT ||2

=
N∑

i=1

||UkT (
Xi(k) − X (k)

)
UΦ(k) ||2
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Subspace Learning in Tensor Spaces

Proof of MPCA Theorem (Continue)

=
N∑

i=1

trace
(

UkT (
Xi(k) − X (k)

)
UΦ(k) · UT

Φ(k)

(
Xi(k) − X (k)

)T
Uk
)

trace

(
UkT

N∑
i=1

[(
Xi(k) − X (k)

)
UΦ(k) · UT

Φ(k)

(
Xi(k) − X (k)

)T
]

Uk

)

= trace
(

UkT
Φ(k)Uk

)
Φ(k) =

N∑
i=1

(Xi(k) − X (k))UΦ(k) .UT
Φ(k) .(Xi(k) − X (k))T ,
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Subspace Learning in Tensor Spaces

CSA/MPCA Equivalence

Theorem

If CSA receives centered input samples and mk = m′k , k = 1, 2, · · ·, n,
then the obtained projection matrices U1, ...,Un are equal to the ones
generated by MPCA.

Proof. [Filisbino et al., 2015]
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Subspace Learning in Tensor Spaces

MPCA and Traditional PCA

Considering tensors of order n = 1. Input samples are vectors xi ∈ Rm1 ,
i = 1, 2, . . . ,N and, in this case, we have only one projection matrix U1 ∈
Rm1×m′1 . If we consider full projection (m′1 = m1) then U1 is an

orthogonal matrix. Also, ỹi = x̃i ×1 U1 = U1T
x̃i , X̃i(k) → x̃i once we have

just one mode k = 1 in this case. Therefore, the matrix Φ(k) assumes the
form:

Φ(k) = Φ(1) =
N∑

i=1

x̃i x̃
T
i =

N∑
i=1

(xi − x) (xi − x)T ,

which is the covariance matrix S of the PCA.
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Subspace Learning in Tensor Spaces

Tensor versus Linear Subspace Learning

PCA.

Vectorize the samples to get vectors v ∈ Rm1·m2...mn

Covariance matrix C ∈ Rm1·m2...mn×m1·m2...mn

Small sample size problems: N � m1 ·m2 . . .mn

PCA:
Number of PCA components is (N − 1) or less
Efficient methods for PCA computation

MPCA:

Covariance matrices C k ∈ Rmk×mk

In general N · qi 6=k mi � mk

Flattening operation generates a number of N · qi 6=k mi samples for
Φ(k) computation
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MPCA Variants

Subspace Learning: Uncorrelated MPCA

Let the tensor-to-vector decomposition:

Yi =
P∑

p=1

yip ẽ1
p⊗ẽ2

p · · · ⊗ẽn
p, P <

n∏
k=1

mk (30)

Let:
y p =

1

N

∑
i

yip , gp =
(

y1p y2p . . . yNp

)T
.

Then:

(ẽ1
p, ẽ

2
p, . . . , ẽ

n
p) = arg max

N∑
i=1

(
yip − y p

)2
, (31)

subject to:

ẽj
p � ẽ

j
p = 1, and

gp · gq

||gp||.||gq||
= δpq.
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MPCA Variants

Subspace Learning: Non-Negative MPCA

Problem

(U j |nj=1) = arg max
U j |nj=1

1

N

N∑
i=1

||Yi − Y||2, (32)

subject to U j ≥ 0.
Solution [Panagakis et al., 2010]:

(U j |nj=1) = arg max
U j |nj=1

1

N

N∑
i=1

||Yi − Y||2, (33)

subject to:

U j ∈ Gr (mj ,m′j ) and U j ≥ 0,

where Gr (mj ,m′j ) is the set of m′j -dimensional linear subspaces of Rmj ,
termed the Grassmann manifold.
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MPCA Variants

Discriminant Analysis and Statistical Learning
Approaches
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Discriminant Analysis and Recognition in Multilinear Spaces

Dimensionality Reduction × Discriminant Analysis

(a) (b)

Figure: (a) Scatter plot and principal directions. (b) The same population but

distinguishing patterns plus (+) and triangle (H).
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Discriminant Analysis and Recognition in Multilinear Spaces

Discriminant Analysis and Classification

⇒ Find discriminate directions to separate sample groups
⇒ Classification approaches.

Supervised statistical learning methods like:

Support Vector Machine (SVM)

Discriminant Analsysis:

Linear: Linear Discriminant Analysis (LDA).
Multilinear: Fisher criterion [Lu et al., 2008].

(LNCC/FEI) 43 / 122



Discriminant Analysis and Recognition in Multilinear Spaces Support Vector Machine (SVM)

Support Vector Machine

SVM

f (x) = (x · w svm) + b = 0

w svm =
∑N

i=1 αi yi xi
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Discriminant Analysis and Recognition in Multilinear Spaces Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis

LDA

W lda = arg max
W

|W T SbW |
|W T Sw W | .

Sb is the between-class
matrix.

Sw is the within-class
matrix.

Wlda is eigenvectors of
S−1

w Sb.

⇒ Sb =
∑g

i=1 Ni (x i − x)(x i − x)T

⇒ Sw =∑g
i=1

∑Ni
j=1(xi ,j − x i )(xi ,j − x i )

T
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Discriminant Analysis and Recognition in Multilinear Spaces Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis
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Ranking Tensor Components

Ranking Tensor Components

Total scatter tensor

Estimating Spectral Structure of Data

Tensor Discriminant Principal Component Analysis

Fisher Discriminability Criterion
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Ranking Tensor Components

Estimating Variances

There is no a closed-form solution for subspace learning problems in
tensor spaces.

Total scatter tensor defined by [Lu et al., 2008]:

Ψj1,j2,···,jn =
N∑

i=1

(
Yi ;j1,j2,···,jn−Yj1,j2,···,jn

)2

N
, (34)

Rank the tensor components by sorting:

E = {Ψj1,j2,···,jn , jk = 1, 2, · · ·,m′k} . (35)

(LNCC/FEI) 48 / 122



Ranking Tensor Components

Spectral Structure of MPCA/CSA Subspaces

Each component subspace:{
ẽjk

k , jk = 1, 2, · · ·,m′k
}
, k = 1, 2, · · ·, n,

has associated eigenvalues:{
λk

jk
, jk = 1, 2, · · ·,m′k

}
, k = 1, 2, · · ·, n,

The data distribution in each subspace:

vk =

m′k∑
jk =1

λk
jk

ẽjk
k , k = 1, 2, · · ·, n,

.
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Ranking Tensor Components

Spectral Structure of MPCA Subspaces

Variance explained by the element of basis B̃:

v1 ⊗ v2 ⊗ · · · ⊗ vn

=
∑

j1,j2,···,jn

λ1
j1λ

2
j2 · · · λ

n
jn ẽj1

1 ⊗ ẽj2
2 ⊗ · · · ⊗ ẽjn

n . (36)

Consequently, we can rank the MPCA/CSA tensor components by
sorting:

E =
{
λj1,j2,···,jn = λ1

j1λ
2
j2 · · · λ

n
jn , jk = 1, 2, · · ·,m′k

}
. (37)
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Ranking Tensor Components

Geometry Behind Discriminant Principal Components
[Thomaz and Giraldi, 2010]

Figure: Hypothetical example: LDA separating hyperplane.(LNCC/FEI) 51 / 122



Ranking Tensor Components

Tensor Discriminant Principal Components - TDPCA

Tensor discriminant principal components analysis (TDPCA)
[Thomaz and Giraldi, 2010, Filisbino et al., 2015].
Steps:

1 {(Xi , li ); Xi ∈ Rm1×m2×...×mn , li ∈ {−1, 1}, i = 1, 2, ...,N}
2 Dimensionality reduction using the MPCA/CSA subspaces:

Yi ∈ Rm′1×m′2×...×m′n .

3 Linear classifier is estimated using Yi and labels.

Separating hyperplane is defined through a discriminant tensor
W ∈ Rm′1×m′2×...×m′n

We select the first principal MPCA/CSA components the ones with the
highest discriminant weights, that is, Pclassifier = [p1, p2, ..., pm],
corresponding to the largest discriminant weights |w1| ≥ |w2| ≥ . . . ≥ |wm|
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Ranking Tensor Components

Fisher criterion [Lu et al., 2008]

W Fisher
j1,j2,···,jn =

∑C
c=1 Nc ·

(
Yc;j1,j2,···,jn−Yj1,j2,···,jn

)2∑N
i=1

(
Yi ;j1,j2,···,jn−Yci ;j1,j2,···,jn

)2
(38)

where,

C is the number of classes;

Nc is the number of elements of class c ;

Yc is the average tensor of the samples belonging to class c ;

Y is the average tensor of all the samples;

Yci is the average of the class corresponding to the ith tensor.
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Ranking Tensor Components

Justification of Fisher criterion for Tensors
[Filisbino et al., 2015]

In [Yan et al., 2005] Fisher criterion is implemented by:

(U j |nj=1) = arg max
U j |nj=1

∑C
c=1 Nc · ||Xc ×1 U1...×n Un − X×1 U1...×n Un||2∑N

i=1 ||Xi ×1 U1...×n Un − Xci ×1 U1...×n Un||2
,

(39)
We can rewrite expression (39) as:

(U j |nj=1) = arg max
U j |nj=1

∑C
c=1 Nc · ||

∑
j1,j2,···,jn

(
Yc;j1,j2,···,jn−Yj1,j2,···,jn

)
ẽj1

1 ⊗ ẽj2
2 · · · ⊗ẽjn

n ||2∑N
i=1 ||

∑
j1,j2,···,jn

(
Yi ;j1,j2,···,jn−Yci ;j1,j2,···,jn

)
ẽj1

1 ⊗ ẽj2
2 · · · ⊗ẽjn

n ||2
,

(40)
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Justification for Fisher criterion for Tensors

By considering Frobenius norm:

(U j |nj=1) = arg max
U j |nj=1

∑
j1,j2,···,jn

(∑C
c=1 Nc ·

(
Yc;j1,j2,···,jn−Yj1,j2,···,jn

)2
)

∑
j1,j2,···,jn

(∑N
i=1

(
Yi ;j1,j2,···,jn−Yci ;j1,j2,···,jn

)2
) ,

(41)
We can postulate that the larger is the value of Γj1,j2,···,jn computed by:

W Fisher
j1,j2,···,jn =

∑C
c=1 Nc ·

(
Yc;j1,j2,···,jn−Yj1,j2,···,jn

)2∑N
i=1

(
Yi ;j1,j2,···,jn−Yci ;j1,j2,···,jn

)2
, (42)

then more discriminant is the tensor component ẽj1
1 ⊗ ẽj2

2 · · · ⊗ẽjn
n for

samples classification.
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Experimental Results
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Experimental Results

Faces Database

Fei Database:

Figure: FEI face database sample. http://fei.edu.br/∼cet/facedatabase.html
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Experimental Results Ranking MPCA/CSA Components

Experimental Results: Ranking MPCA/CSA
Components.

Gender Experiments
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Database: (Xi , li ) ∈ R480×640×11, li ∈ {−1, 1}
↓

U1,U2,U3

↓
Base B̃ : S1 = R479×639×11; S2 = R33×42×9

↓
Ranking
↓

B̂1, B̂2, ..., B̂2000; B̂j ⊂ B̃

↓
Ŷt,1, Ŷt,2, ..., Ŷt,2000
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Implementation Details

System

Processor: Intel-Core-I7

Cores: 6 - Threads: 12

RAM: 12GB

S1 = R479×639×11 > 12GB ⇒ Time = 3h ⇒ Tmax = 3

S2 = R33×42×9 = 7GB ⇒ Time = 5
′ ⇒ Tmax = 4
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Implementation Details

Install the Matlab Tensor Toolbox.

http://www.sandia.gov/ tgkolda/TensorToolbox/

Principal Functions

tensor(X ): transform in tensor the generalize matrix X.

tenmat(X , n): flattening in dimension n.

ttm(X ,U, n): mode-k product.
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Examples

tenmat(X, 1)

X(1) =

 x(111) x(121) x(131) | x(112) x(122) x(132)

x(211) x(221) x(231) | x(212) x(222) x(232)

x(311) x(321) x(331) | x(312) x(322) x(332)
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Examples

tenmat(X, 2)

X(2) =

 x(111) x(211) x(311) | x(112) x(212) x(312)

x(121) x(221) x(321) | x(122) x(222) x(322)

x(131) x(231) x331) | x(132) x(232) x(332)


(LNCC/FEI) 63 / 122



Experimental Results Ranking MPCA/CSA Components

Examples

tenmat(X, 3)

X(2) =

[
x(111) x(211) x(311) | x(121) x(211) x(321) | x(131) x(231) x(331)

x(112) x(222) x(322) | x(122) x(222) x(322) | x(132) x(232) x(332)

]
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Examples

Let the Tensor X ∈ Rm1×m2×m3 and the matrix U ∈ Rm′k×mk .
The function,

ttm(X,U, n) = (X×n A)

⇒ ttm(X,U, 1) = (X×1 U)m
′
1,m2,m3

=
∑m1

j=1 Xj ,m2,m3 .Um
′
1,j

⇒ ttm(X,U, 2) = (X×2 U)m1,m
′
2,m3

=
∑m2

j=1 Xm2,j ,m3 .Um
′
2,j

⇒ ttm(X,U, 3) = (X×3 U)m1,m2,m
′
3

=
∑m3

j=1 Xm1,m2,j .Um
′
3,j

Matricized version

Y = (X×n U)⇐⇒ Y(n) = UX(n)
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1: Input: Samples
{

Xi ∈ Rm1×m2×...×mn , i = 1, ...,N
}

; tensor(Xi )

2: Preprocessing: Center the input samples as {X̃i = Xi − X}
3: Initialization: Eigen-decomposition of Φ(k)∗ =

∑N
i=1 X̃i(k) · X̃T

i(k), set Uk
0 as the most

significant m
′
k eigenvectors , for k = 1, ..., n. X̃i(k) ←− tenmat(X̃i , k)

4: Local optimization:

5: Compute Ỹi = X̃i ×1 U
1T

0 ...×n U
nT

0 , i = 1, ...,N; Y = ttm(X̃,Us, 1..n)

6: Compute Υ0 =
∑N

i=1 ||Ỹi ||2F ;
7: for t = 1, ... to Tmax do
8: for k = 1, ... to n do
9: Set the matrix Uk

t to consist of the m
′
k leading eigenvectors of Φ(k), defined in

expression (28);

Uk
t ←− Φk = A(k) · AT

(k) ←− tenmat(Ak , k) = ttm(X̃,Us,−k)

10: end for
11: Compute Ỹi , i = 1, ...,N and Υt ;
12: if |Υt −Υt−1| < η then

13: break; η = 0.001

14: end if
15: end for
16: Output:Projection matrices Uk = Uk

t , k = 1, ..., n.
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Estimating MPCA Subspaces Dimensions

The reduced dimensions m
′
k , k = 1, 2, . . . , n must be specified in advance

or determined by some heuristic. In [Lu et al., 2008] it is proposed to
compute these values in order to satisfy the criterium:∑m′k

ik =1 λik (k)∑mk
ik =1 λik (k)

> Ω (43)

where Ω is a threshold to be specified by the user and λik (k) is the ik th

eigenvalue of Φ(k)∗ (Ω = 0.95).
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CSA Algorihm

1: Input: Samples
{

Xi ∈ Rm1×m2×...×mn , i = 1, ...,N
}

; dimensions m
′
k ; k = 1, · · ·, n.

2: Initialization of Uk
0 by truncating the number of columns of the identity matrix;

3: for t = 1, ... to Tmax do

4: for k = 1, ... to n do
5: Mode-k tensor products:

Xk
i =Xi ×1 U

1T

t . . .×k−1 U
(k−1)T

t ×k+1 U
(k+1)T

t−1 . . .×n U
nT

t−1

6: Mode-k flattening:
Xk

i for the matrix X k
i : X k

i ⇐=k Xk
i

7: Covariance matrix computation:

C k : C k =
∑N

i=1 X
k
i X

kT

i

8: Compute the first m
′
k leading eigenvectors of C k ,

C kU t
k = U t

k Λk , which constitute the column vectors of U t
k

9: end for
10: if (t > 2 and Tr [abs(UkT

t Uk
t−1)]/m

′
k > (1− ε), k = 1, ..., n) then

11: break; ε = 0.001
12: end if
13: end for
14: Output the matrices Uk = U t

k , k = 1, ..., n.
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Review: Ranking Tensor Components

Statistical Variance

E = {Ψj1,j2,···,jn , jk = 1, 2, · · ·,m′k} . (44)

Spectral Structure

E =
{
λj1,j2,···,jn = λ1

j1λ
2
j2 · · · λ

n
jn , jk = 1, 2, · · ·,m′k

}
. (45)

Fisher criterion

W Fisher
j1,j2,···,jn =

∑C
c=1 Nc ·

(
Yc;j1,j2,···,jn−Yj1,j2,···,jn

)2∑N
i=1

(
Yi ;j1,j2,···,jn−Yci ;j1,j2,···,jn

)2
(46)

TDPCA: Largest discriminant weights |w1| ≥ |w2| ≥ . . . ≥ |wm|
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Understanding Tensor Components

(a) (b)

Figure: Subspace Smpca
1 for FEI database. Ranking using: (a) Statistical variance

(horizontal axis), TDPCA-SVM (red) and spectral variance (blue). (b) Including
the ranking by Fisher criterion.
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Understanding Tensor Components

In order to quantify the amount of variance of the principal components,
the proportion of total variance information λ described by the kth tensor
principal component can be calculated as follows:

λk =
λk∑m
j=1 λj

, k = 1, 2, ...,m =
n∏

i=1

m′i , (47)

where {λ1, λ2, ..., λm} are the estimated variances.
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Understanding Tensor Components: Total Variance

(a) (b)

Figure: (a) Amount of total variance explained by the 600 Smpca
1 most expressive

tensor components selected by spectral variance, TDPCA-SVM, and Fisher
criteria. (b) Amount of total variance using the 600 most expressive tensor
components of Smpca

2 , including also the TDPCA-MLDA components.
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Understanding Tensor Components

In order to quantify the discriminant power of the principal components,
the proportion of total discriminant information t described by the kth

tensor principal component can be calculated as follows:

tk =
|σk |∑m
j=1 |σj |

, k = 1, 2, ...,m, (48)

where m is the subspace dimension and [σ1, σ2, ..., σm] are the weights
computed using the separating hyperplanes.
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Experimental Results: Total Discriminant

Smpca
1 Smpca

2
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Recognition Rates

We have compared the effectiveness of the tensor principal components
ranked on recognition tasks using:

k-fold cross validation.

Computing the Mahalanobis distance from Yt to Yi .

dk
i (Yt) =

k∑
j=1

1

λj
(Yt;j − Yi ;j )

2 (49)

where, Ŷt is test observation and Ŷi class mean, with λj is the
corresponding spectral variance and k is the number of tensor principal
components retained.
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Recognition Rates for Gender (FEI Database)

Smpca
1 Smpca

2

Scsa
1 Scsa

2
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Projection in subspace B̂2

Figure: Smpca
2 Figure: Scsa

2

Figure: Smpca
2

Figure: Scsa
2
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Reconstruction

The reconstruction error, which is quantified through the root mean
squared error (RMSE), computed as follows:

RMSE
(

B̂
)

=

√∑N
i=1 ||XR

i − Xi ||2
N

, (50)

where B̂ is the subspace for projection.
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Multidimensional Image Data Representation

Figure: Samples from FEI database and frontal pose of mean tensor.ppp
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RMSE

Smpca
2 Scsa

2
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Reconstruction from Subspace B̂100

MPCA:

Fisher
TDPCA-
MLDA

Spectral
TDPCA-
SVM

CSA:

Fisher
TDPCA-
MLDA

Spectral
TDPCA-
SVM
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Computational Complexity: Asymptotic Analysis

Assuming m1 = m2 = . . .mn = m. One iteration of MPCA

Formation of the matrix Φ(k): O
(
N · n ·m(n+1)

)
,

Eigen-decomposition: O
(
m3
)

Computation of projection Ỹi : O
(
n ·m(n+1)

)
Computation Complexity for MPCA: O

(
N · n ·m(n+1)

)
Computational Complexity of Ranking Techniques

Spectral: O (
∏n

i=1 m′i )
TDPCA-MLDA: O(min(N,

∏n
i=1 m′i ) ·

∏n
i=1 m′i ))

TDPCA-SVM: O(max(N,
∏n

i=1 m′i ) · N2)

Fisher: O (N ·
∏n

i=1 m′i )
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Issues in Multilinear Applications

Issues in Multilinear Applications

Many problems involving tensors are NP-hard. Ex: Finding the best
rank-1 tensor decomposition [Hillar and Lim, 2013];

A problem Π is NP-hard if a polynomial-time algorithm for Π would
imply a polynomial-time algorithm for every problem in NP. A
problem is NP-complete if it is both NP-hard and an element of NP.

Memory/CPU requirements

Reconstruction Artifacts

Tensors in differentiable manifolds

Incorporating prior information in MPCA
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Perspectives: Manifold Learning and Tensor Fields

Figure: Manifold charting.
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Perspectives: Manifold Learning and Tensor Fields

Figure: Tangent vector and tangent space.
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Perspectives: Manifold Learning and Tensor Fields

Tensor field

Given subspaces T i
p (M) ⊂ Tp (M), with dim

(
T i

p (M)
)

= mi ,
i = 1, 2, · · ·, n,

The tensor product: T 1
p (M)⊗T 2

p (M)⊗ · · · ⊗T n
p (M),

Individual basis
{

eik
k (p), ik = 1, 2, · · ·,mk

}
⊂ T k

p (M);

A basis for the vector space T 1
p (M)⊗T 2

p (M)⊗ · · · ⊗T n
p (M) is the

set: {
ei1

1 (p)⊗ei2
2 (p)⊗ · · · ⊗ein

n (p), eik
k (p) ∈ T k

p (M)
}
. (51)

A tensor X of order n in p ∈M:

X (p) =
∑

i1,i2,···,in

Xi1,i2,···,in (p) ei1
1 (p)⊗ei2

2 (p)⊗ · · · ⊗ein
n (p) . (52)
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Perspectives: Manifold Learning and Tensor Fields

The application of the above concepts for data analysis depends on the
following issues:

Manifold learning to build the local coordinate systems
{(Uα, ϕα)}α∈I , for M;

Discrete tensor field computation X (pi ), i = 1, 2, · · ·,N;

Local subspace learning technique to perform dimensionality reduction
to compute the discrete tensor field Y (pi ), i = 1, 2, · · ·,N, given by:

Y (pi ) =
(

X×1 U1T ×2 U2T
...×n UnT

)
(pi ) , (53)
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Perspectives: Application of Spatial Weighting Maps

Leonardo da Vinci’s Advice to Artists (E. Kelen, 1990)

”If Nature had a fixed model for the proportions of the face
everyone would look alike and it would be impossible to tell
them apart; but she has varied the pattern in such a way that
although there is an all but universal standard as to size, one
clearly distinguishes one face from another.”

→ Holistic cognition task composed of configural (global) and featural
(local) sources of information.
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Is the frontal face below of a male subject?
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Is the frontal face below of a male subject?
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Is the frontal face below of a male subject?
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Yes. It is a male.
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Priori information (from left to right):
Statistical, cognitive and both.
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How do we accomplish this
process of coding and

decoding faces?
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We will present a feature extraction approach of
determining priori-driven dimensions along which face
images vary that might be useful to understand the way
faces are processed.

Goal:Combine variance with prior knowledge and analyze
all features simultaneously.
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Geometric idea:
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Geometric idea: (cont.)
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Geometric idea: (cont.)
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Geometric idea: (cont.)
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Mathematically,

Let an N × n data matrix X be composed of N face images with n pixels,

that is, X = (x1, x2, . . . , xN)T . Let this data matrix X have covariance

matrix

S =
1

(N − 1)

N∑
i=1

(xi − x̄)(xi − x̄)T ,

where x̄ is the grand mean vector of X given by

x̄ =
1

N

N∑
i=1

xi = (x̄1, x̄2, . . . , x̄n).
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Mathematically, (cont.)

Let an N × n data matrix X be composed of N face images with n pixels,

that is, X = (x1, x2, . . . , xN)T . Let this data matrix X have covariance

matrix

S =
1

(N − 1)

N∑
i=1

(xi − x̄)(xi − x̄)T ,

where x̄ is the grand mean vector of X given by

x̄ =
1

N

N∑
i=1

xi = (x̄1, x̄2, . . . , x̄n).

→ Variable deviations from the mean have the same weight. That is, all
the n variables are equally important.
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Mathematically, (cont.)

The well-known Pearson’s sample correlation coefficient between the j th

and kth pixels can be defined as follows:

rjk =
sjk√

sj
√

sk

=

∑N
i=1(xij − x̄j )(xik − x̄k )√∑N

i=1(xij − x̄j )2

√∑N
i=1(xik − x̄k )2

,

for j = 1, 2, . . . , n and k = 1, 2, . . . , n. Analogously we can describe a
priori-driven sample covariance s∗jk between the j th and kth variables by

s∗jk = (
√

wj
√

wk )sjk

=
N∑

i=1

√
wj (xij − x̄j )

√
wk (xik − x̄k ).

(LNCC/FEI) 102 / 122



Perspectives in Multilinear Subspace Learning

Mathematically, (cont.)

The spatial weighting vector (or spatial attention map)

w = [w1,w2, . . . ,wn]T

is such that wj ≥ 0 and
∑n

j=1 wj = 1, where each wj measures the

information power of the j th pixel. Thus, when n pixels are observed on N

samples, the weighted sample covariance matrix S∗ can be described by

S∗ =
{
s∗jk
}

=

{
N∑

i=1

√
wj(xij − x̄j)

√
wk(xik − x̄k)

}
.
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Mathematically, (cont.)

Let S∗ have respectively P∗ and Λ∗ eigenvector and
eigenvalue matrices, as follows:

P∗TS∗P∗ = Λ∗.

The set of m (m ≤ n) eigenvectors of S∗, that is,

P∗ = [p∗1,p
∗
2, . . . ,p

∗
m],

which corresponds to the m largest eigenvalues, defines
the orthonormal coordinate system for the data matrix X
called priori-driven principal components.
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Incorporating priori-driven information (algorithm)
Spatially weighted PCA

1 Calculate a spatial weighting vector w = [w1,w2, . . . ,wn]T ;

2 Normalize w: Replace wj with
|wj |∑n

j=1 |wj |
;

3 Standardize all n variables, replacing xij with zij = xij − x̄j ;

4 Spatially weigh up all the standardized zij : z∗ij = zij
√

wj ;

5 Calculate P∗, the m largest eigenvectors of (Z ∗)T Z ∗.
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Experiments

Two-group separation tasks (frontal faces):

Gender (female versus male)

Facial expression (smiling versus non-smiling)

Database (2D): FEI (400 images, 200 subjects)

Note: All the face images have been converted to grayscale, pre-aligned
and cropped to 128x128 pixels in size.

(LNCC/FEI) 106 / 122



Perspectives in Multilinear Subspace Learning

Experiments (cont.)

Statistical prior information has been described simply by
the leading eigenvector of the between-scatter matrix Sb

Sb =

g∑
i=1

Ni (x̄i − x̄)(x̄i − x̄)T ,

→ 1st order statistical differences.
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Experiments (cont.)

Cognitive prior information has been described by
(absolute) gaze duration heatmap means using Tobii
TX300 eye tracker and the following settings:

Binocular tracking

Data sampling rate of 300Hz

Minimum fixation duration of 60ms

Maximum dispersion threshold of 0.5 degrees

Each stimulus task begins with a calibration procedure
implemented in the Tobii Studio software to ensure
accurate tracking of the eye gaze.
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Experiments (cont.)

Stimuli composed of 60 images distributed equally among
the tasks with the following display settings:

Face images enlarged to 512x512 pixels

Black background and stimuli centralized

Central fixation cross in between stimuli

Presentation at a distance of 60cm

23in 1920x1080 widescreen monitor

All face stimuli are presented for 3 seconds followed by a
question that requires a response in relation to the task
(male/female, smiling/non-smiling).
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Experiments (cont.)

A number of 44 adults (26 men and 18 women)
participated in these experiments. All participants:

are Brazilian students or staff at FEI

have normal or correct vision

provided written informed consent

Presentation at a distance of 60cm
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Gender experiments/results (gazeplot, 3 seconds)
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Facial expression experiments/results (gazeplot, 3 seconds)
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Gender and facial expression corresponding heatmaps
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Results (statistical prior information)

Note: Differences are essentially local.
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Results (cognitive prior information)

Note: Differences are essentially global.
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Results (both prior information)

Note: Global and local differences.
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Results (dimensionality reduction)

Note: Less priori-driven components than standard ones.
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Results (inner product matrices of the top 20 components)

Note: Changes in the information retained and the ordering of pcas.
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Results (10-fold cross validation, nearest neighbor)

Note: Cognitive prior information alone disappointing. But if combined
with statistical one could improve the discriminant power of the
components.
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Thus,

How do we accomplish this process of
coding and decoding faces?

”... it is not really the perception of likeness for which we
are originally programmed, but the noticing of unlikeness,
the departure from the norm which stands out and sticks
in the mind.” (Grombrich, E. H., 1972)

→ Priori-driven variance might be a way forward.
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Perspectives: High Performance and NN-Factoring

High Performance Solutions:

Reduce the inter processor communication in distributed memory
algorithms [Austin et al., 2015],
Intermediate data explosion: computation of matrix Φ(k), fast memory
access in mode-k flattening
Out-of-Core solutions [Suter et al., 2011]
Quantum Computers: Could they be effective for tensor problems
[Hillar and Lim, 2013]?

Visualization Artifacts: Non-Negative factorization
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Conclusions and Final Remarks

Tensor in pattern recognition:

Dimensionality reduction,
Ranking tensor components
Classification
Reconstruction

Generalized Matrix and Tensor Product Approaches

Tensor computation is not matrix computation with additional
subscripts

Tensors are geometric objects
Manifold learning

Incorporation of prior knowledge to steer the data mining tasks

High Performance Requirements
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