An approach for Brazilian Sign Language (BSL) recognition based on facial expression and k-NN classifier

Tamires Martins Rezende¹ Cristiano Leite de Castro¹ Sílvia Grasiella Moreira Almeida²

¹The Electrical Engineering Graduate Program - UFMG ²Department of Industrial Automation - IFMG Ouro Preto.

Summary

- 1 Brazilian Sign Language
- Database
- 3 Methodology and Results
- Conclusions
- 5 Acknowledgment

Brazilian Sign Language (BSL) or Libras

- The second official language of Brazil.
- 5 main parameters:
 - point of articulation,
 - 2 hand configuration,
 - 3 movement,
 - 4 palm orientation and
 - 5 non-manual expressions.
- This paper did an exploratory study of the peculiarities involved in non-manual sign language expression recognition.

Brazilian Sign Language (BSL) or Libras

The BSL recognition using computational methods is a challenge for a variety of reasons:

- There is currently no standardized database containing signs in a format that allows computer classification systems validation:
- One sign is composed of simultaneous elements;
- The language does not contain a consistent identifier for the start and end of a sign;
- Different people complete any given gesture differently.

The first step was to choose the signs that contained changes in facial expression during execution.

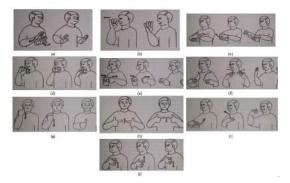


Figure: Signs: (a) to calm down, (b) to accuse, (c) to annihilate, (d) to love, (e) to gain weight, (f) happiness, (g) slim, (h) lucky, (i) surprise, and (j) angry

Record Protocol

After first step to record, the signs were recorded.

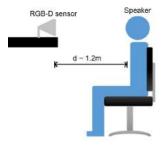


Figure: Scenario created for record the signs

With the 10 signs each recorded 10 times with the same speaker, the balanced database had a total of 100 samples.

Record Protocol

RGB-D sensor \Rightarrow Kinect Software ⇒ nuiCaptureAnalyse

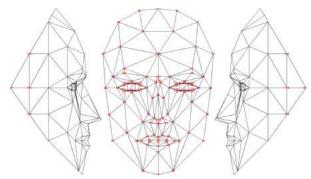


Figure: Facial model used with labeled points

Methodology

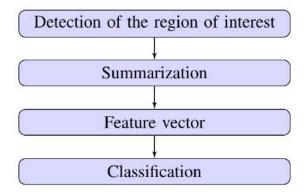


Figure: Methodology for the automatic face recognition system

Step 1: Detection of the region of interest

Input: Signals recorded by Kinect. Output: Video with the face images.

Figure: Full frame

Figure: Selected face

Step 2: Summarization

Input: Face images.

Output: 5 most relevant frames.

Figure: The five most relevant frames extracted from a recording of the sign "to love"

Step 3: Feature vector

Input: 5 most relevant frames. **Output**: Descriptor of a sign.

Descriptor of a single frame:

$$D = \begin{bmatrix} x_1 & y_1 & x_2 & y_2 & \dots & x_{121} & y_{121} \end{bmatrix}_{1 \times 242}$$

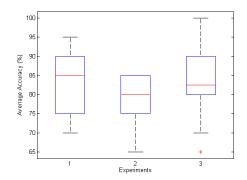
Sign:

$$\label{eq:Vector} \begin{aligned} \textit{Vector} &= \left[\begin{array}{cccc} \textit{D}_1 & \textit{D}_2 & \textit{D}_3 & \textit{D}_4 & \textit{D}_5 \end{array} \right]_{1\times 1210} \\ \textit{Vector} &= \left[\begin{array}{cccc} \textit{x}_{1,1} & \textit{y}_{1,1} & \dots & \textit{x}_{i,j} & \textit{y}_{i,j} & \dots & \textit{x}_{5,121} & \textit{y}_{5,121} \end{array} \right]_{1\times 1210} \\ & \text{i} &= \text{number of the frame and} \\ & \text{j} &= \text{point of the face} \end{aligned}$$

Step 4: Classification

Input: Descriptor of a sign.

Output: Average accuracy of the 10 iterations.


```
Algorithm 1: K-NN CLASSIFICATION
   Input: Sign samples
   Output: acc_{avg} and \sigma of the 10 iterations
 1 Start
       for w = 1 to 10 do
           Randomizes the samples of each sign
           train ← 80% of the data
           test \leftarrow 20\% of the data
           for k = 1 to 10 do
               testV \leftarrow Cross-validation(5-fold)
               acc(k) \leftarrow K-NN(testV, k)
           end
            |acc\ ind| \leftarrow max(acc)
11
           k_{best} \leftarrow ind
           acc_{test}(w) \leftarrow K-NN(test, k_{heat})
12
13
       end
       acc_{avg} \leftarrow mean(acc_{test}(w))
       \sigma \leftarrow std(acc_{test}(w))
16 end
17 retorn accavg, σ
```

Experiments and Results

EX1: Raw data.

EX2: Z-Score Normalization.

EX3: Centroid normalization.

■ The BSL recognition is a challenge problem.

The lack of a database well structured with signs in BSL.

■ This paper did an exploratory study of the peculiarities involved in non-manual expressions.

■ The methodology adopted had a considerable performance, achieving a maximum average accuracy of 84%.

Acknowledgment

We would like to thanks PPGEE - UFMG for the incentive and guidance.

The present work was completed with the financial support of CAPES - Brazil.

Thank you!