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Abstract—One of the first steps in numerous computer vision
tasks is the extraction of keypoints. Despite the large number of
works proposing image keypoint detectors, only a few method-
ologies are able to efficiently use both visual and geometrical
information. In this work we introduce KVD (Keypoints from
Visual and Depth Data), a novel keypoint detector which is scale
invariant and combines intensity and geometrical data using
a decision tree. We present results from several experiments
showing that our methodology produces the best performing
detector when compared to state-of-the-art methods, with the
highest repeatability scores for rotations, translations and scale
changes, as well as robustness to corrupted visual or geometric
data. Additionally, as processing time is concerned, KVD yields
the best time performance among methods that also use depth
and visual data.

Keywords-keypoint detector; RGB-D image; decision tree;
information fusion;

I. INTRODUCTION

Selecting a set of interest points in images has been
an omnipresent step in a large number of computer vision
methodologies over the years. A careful choice of interest
points in an image may significantly reduce the effect of noisy
pixels and identify regions rich in information, which allows
for an effective description of the regions containing these
points.

Moreover, the ever growing volume of data of different
kinds, such as high resolution images, RGB-D data (composed
of visual and three dimensional data) and the massive image
repositories available in the web, makes the creation of effec-
tive keypoint detectors crucial for a large number of computer
vision techniques. Such detectors make it possible to reduce
the data search space, thus making the processing of such data
a manageable task.

We present a novel RGB-D keypoint detection technique
that combines both intensity and 3D information and is capable
of handling the lack of illumination as well as dealing with
substantial noise on both intensity and depth data, while
maintaining a good computational efficiency. The detector
shows robustness to motion disturbances, such as rotation,
scale, and translational motion. Figure 1 illustrates the benefits
of using our detector.

The detection and selection of a set of points of interest,
to which we will henceforth refer to as keypoints, consist in
looking for unique points located in discriminative regions
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Fig. 1. Comparison between keypoints detected by our methodology (right
images) and the ORB algorithm (left image). One may observe the absence
of keypoints around the border of the book in the left image. Since KVD
captures both visual and geometrical features to find keypoints it is able to
detect such keypoints.

of the image that will account for good repeatability, which
in turn may lead to less ambiguity. There is a vast body of
literature on keypoint detectors, of which [1], [2], [3], [4], [5]
are well known representatives.

The richness of information being constantly engrafted in
images has naturally pushed the envelope for several image
based keypoint detection techniques. The vision literature
presents numerous works that use different cues for keypoint
detection based on pixel intensity. Keypoint detectors based
on images alone seldom use other information such as the
scene’s geometry. As a consequence, common issues concern-
ing real scenes, like variation in illumination and textureless
objects, may dramatically decrease the performance of such
techniques.

The newer 3D sensors are less sensitive to illumination
than 2D cameras and provide the scale associated to each
point. On the other hand, they are still very expensive and
demand substantial engineering effort to be acquired. With the
recent introduction of fast and inexpensive RGB-D sensors,
the integration of synchronized intensity (color) and depth
has become easier to obtain. The growing availability of
inexpensive, real time depth sensors, has made depth images
increasingly popular, inducing many new computer vision
techniques.

Contributions: The main contribution of this work 1 is a
novel keypoint detector called KVD (Keypoints from Visual

1This work is the result of a M.Sc. dissertation



and Depth data) that efficiently fuses intensity and depth data.
By addressing keypoint properties such as distinctiveness,
locality and efficiency, our methodology produces the best
performing detector by using both visual and geometrical data,
and presents a good performance and graceful degradation
even in the absence of either one of them.

II. RELATED WORK

The detection of keypoints in images is an essential com-
ponent in a myriad of applications in pattern recognition
and computer vision algorithms. Since the seminal paper of
Moravec [6], several keypoints detectors were proposed.

A recent approach that has become popular is based on
machine learning techniques. Rosten et al.[4] proposed the
Features from Accelerated Segment Test (FAST) detector,
which extracts a simple descriptor based o intensity differences
and makes use of a decision tree for classification. The work
of Rublee et al.[5] presented the detector called Oriented
FAST and Rotated BRIEF (ORB) that builds upon FAST’s
methodology. Which also implements a scale pyramid using
the Harris cornerness function to achieve scale invariance.

Extracting data from images can usually provide rich in-
formation on the object features, but geometrical information
produced by 3D sensors based on structured lighting or time
of flight is less sensitive to visible light conditions. Three-
dimensional data has been successfully exploited by Steder et
al. [7]. The authors proposed the NARF descriptor to extract
features from 3D point cloud data for object recognition and
pose estimation.

The work of Holzer et al. [8] makes use of a random forest
to approximate a specially tailored response function, which
takes advantage of the curvature and the repeatability of each
point.

Most recently, the algorithms on combining geometrical and
visual have emerged as promising and effective approaches to
deal with the tasks of object detection [9], Super-Resolution
[10] and keypoint description [12]. Although several detectors
exists for different information types, very few studies have
addressed resolving the geometrical and visual fusion on
low level features. To the best of our knowledge, only the
unpublished work HARRIS6D, which the implementation can
be found at PCL library [13], combines different information
types to perform keypoint detection. In this work we build a
new keypoint detector algorithm where both visual and depth
data are used and we show that it effectively merges both
information data with a low computational cost and yields
high repeatability rate.

III. METHODOLOGY

Similar to the works of Rosten et al. [4] and Rublee et
al. [5], our method is also based on a machine learning
approach for keypoint detection. However, differently from
these works, our approach has been designed to use both ge-
ometrical and visual data for improving the detection process
and working even in the absence of image data.

The input to our algorithm is a data pair (I,D), which
denotes the output of a typical RGB-D device, where I and
D are the intensity and the depth matrices, respectively. Let
x = (i, j) denotes a pixel’s coordinates, I(x) the pixel’s
intensity, D(x) is the depth for that pixel, P (x) is the
corresponding 3D point, and N(x) is its normal vector.

As stated, our technique is built upon a supervised learn-
ing approach, with a training step where a decision tree is
created. This decision tree plays a key role in the detection
procedure, since it is used to classify points into keypoints.
There are three steps in this classification process: the feature
vector composition, the model training, and the non-maximal
suppression.

A. Feature Vector Composition

The first step of the detection process is to create a feature
vector for every point, which will be fed into a decision tree for
classification. Figure 2 shows a representation of the feature
vector construction.

To decide if a given pixel is a keypoint, we analyze a circular
vicinity of the given point in increasing radii. Figure 2 shows
an example for the radii set S = {3, 5, 7, 9}, which is the
settings used in our experiments. It is worth to note that the
algorithm is defined for any arbitrary set S.

Given an image pixel coordinates c ∈ R2, we consider its
vicinity as the image patches that contain the circles centred
at c with radii varying in r ∈ S. Each circle is defined by the
function B(r, c) which we denote as Br(c):

Br(c) : R3 → {p1,p2, ...,pn}. (1)

The Br(c) map function outputs all pixels pi lying within the
Bresenham’s circle [14] with radius equals to r. Thus, the total
vicinity considered consists of the concatenation of all vectors
Br(c),∀r ∈ S. We define the vicinity of a central pixel c as

Vc = {Br1(c), Br2(c), . . . , Br|S|(c)}, ∀ri ∈ S. (2)

For each vicinity element p ∈ Vc, we compute visual and
geometric features.

Feature Extraction: The visual features are computed based
on simple intensity difference tests among the vicinity. For
each pixel p ∈ Vc we evaluate

τv(c,p) =


2, if I(p)− I(c) < −tv
1, if I(p)− I(c) ≥ tv
0, otherwise,

(3)

where tv represents a tolerance threshold (tv = 20 in our
settings). This function analyses the intensity relationship
between both pixels c and p, encoding whether the pixel
intensity I(p) is darker, lighter or at similar intensity regarding
the pixel intensity I(c), respectively.

The visual feature extraction implemented by the function
τv is similar to the one used by Rosten et al [4], however
we embed geometric cues into our feature vector to increase
robustness to illumination changes and to the lack of texture
in the scenes.
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Fig. 2. Visual and geometrical feature extraction for a keypoint. The
highlighted squares correspond the Bresenham’s circle.

Geometric feature extraction is performed by the τg(·) func-
tion. This process is depicted in Figure 2. It is based on two
invariant geometric measurements: the normal displacement
and the surface’s convexity.

While the normal displacement test is performed to check
whether the dot product between the normals N(c) and
N(xi) is smaller than a given displacement threshold tg , the
convexity test is accomplished by the local curvature indicator,
κ, estimated as:

κ(c,pi) = 〈P (c)− P (pi), N(c)−N(pi)〉, (4)

where 〈·〉 is the dot product, and P (c) is the 3D spatial
point associated with pixel p and depth D(p). The κ function
is used to capture the convexity of geometric features and
also to unambiguously characterize the dot product between
surface normals. The sign of the function κ denotes whether
the surface between the two points assessed is convex (positive
signed) or concave (negative signed).

Thus, the geometrical features are computed by analyzing
the behavior of the surface between two points:

τg(c,pi) =


2, if 〈N(pi), N(c)〉 < tg ∧ κ(c,pi) > 0

1, if 〈N(pi), N(c)〉 < tg ∧ κ(c,pi) < 0

0, otherwise.
(5)

Intuitively, it encodes whether the surface between the
central pixel c and the queried point pi is convex, concave or
plane, respectively. We consider a plane if 〈N(pi), N(c)〉 ≥
tg . With tg = 0.97 in our settings.

Scale Invariance: Scale invariance is endowed to our detec-
tor by taking advantage of the geometry information available,
in order to weight the Bresenham’s circles of different radii.
We analyze the geometrical vicinity encompassed by each
Bresenham’s circle Br(c) in the 3D scene, by computing
the minimum Euclidean distance among all vectors v =
P (c)− P (pi), with pi ∈ Br(c):

dr = min
pi

‖P (c)− P (pi)‖ , (6)

where P (c) and P (pi) are the 3D points corresponding to
the central pixel c and the pixels composing the Bresenham’s
circle pi ∈ Br(c), and ‖·‖ stands for the L2-norm.

The minimal distance dr is taken as an estimative of the
circle’s radius in the 3D scene. It is then weighted by the
unidimensional-Gaussian function, in order to penalize circles
which its estimated radii in the 3D scene are distant from µ =
0.02 meters, a predefined radius which seems as a reasonable
value for our application.

wr = exp

(
− (u− dr)

2

2σ2

)
, (7)

the standard deviation σ = 0.011 was empirically chosen,
targeting a sufficiently narrow shape around the mean value.

The weighting procedure avoids the addition of noise by
circles covering non-interesting areas, e.g. for points too far
from the camera, larger circles might have to be strongly
penalized.

Final Feature Vector: In order to combine the geometric and
visual information in one final feature vector, we deployed two
different approaches: A.

1) The additive approach: This method combines both cues
by adding both visual and geometric feature vectors.
We extract a feature vector from a Bresenham’s cir-
cle of radius r centered at c as a row vector ~vr =[
f1 f2 . . . f|Br(c)|

]T
where each fi ∈ ~vr is

given by:

fi(c, r) = wr ∗ (τv(c,pi,r) + τg(c,pi,r)), (8)

where pi,r is the ith element of the respective Bre-
senham’s circle Br(c). The final feature vector ~F is
generate by concatenating all the feature vectors vr as:

~F =
[
~vr1 ~vr2 · · · ~vr|S|

]T ∀r ∈ S. (9)

2) The concatenation approach: This approach concate-
nates both feature vectors, where one encodes visual
features and the other geometrical features. We will
depict the visual vector ~Fv construction, while the
geometric vector ~Fg follows a similar process. For
each Bresenham’s circle, a row feature vector ~vr =[
f1 f2 . . . f|Br(c)|

]
, is computed where each

fi ∈ ~vr is calculated as:

fi(c, r) = wr ∗ τv(c,pi,r), (10)

then, the visual feature vector ~Fv is defined as:

~Fv =
[
~vr1 ~vr2 · · · ~vr|S|

]T ∀r ∈ S. (11)

The geometric feature vector ~Fg follows the same logic,
but applying the function τg(·) instead of τv(·) in Equa-
tion 10. Finally, the final feature vector ~F consists of
the concatenation of both visual and geometric vectors:

~F =
[
~Fv, ~Fg

]T
. (12)

Thanks to the fusion process, our method is able to detect
keypoints using both visual and geometrical data. Figure 1
depicts detected keypoints exploiting the fused information.



B. Decision Tree Training

The decision tree is a fundamental part of the algorithm, it is
used to decide whether a target point should be considered as a
keypoint candidate or not. In order to build the tree, we select
a sample of training points, which contains both keypoints and
non-keypoints examples properly labeled.

We created a training set by extracting a total of 160, 144
(66% of total) points - the remaining points were used for the
test set - from the RGB-D Berkeley 3-D Object Dataset [15],
which is publicly available2. Both sets were equally divided
into positive and negative samples. In order to define the
threshold of the curvature for a positive keypoint, we computed
the curvature of positive keypoints which were manually
selected. We have found the value of 0.09 based on the
average of these curvatures. Thus, all the points with curvature
larger than 0.09 were labeled as positive samples for the
keypoint class. To take visual features into account, we also
add keypoints detected by ORB as positive examples.

C. Non-Maximal Suppression

For non-maximal suppresion, we rank the keypoint candi-
dates (classified as positive by the decision tree) lying within
a small image patch. The best ranked candidate is selected as
a keypoint. For the ranking function, let

Xrck = {pi : pi ∈ Br(c) ∧ (τv(c,pi) = k ∨ τg(c,pi) = k)},
(13)

be the set containing all the pixels within a Bresenham’s circle
Br(c) whose geometry or visual feature has value k.

For each radius r ∈ S , we calculate the partial response
Rp(c, r) as:

Rp(c, r) = max
X∈{Xrc1

,Xrc2
}

(
1

|X |
∑
xi∈X

Dv(c,xi)+λDg(c,xi)

)
,

(14)
where Dv(c,x) = abs(I(x) − I(c)) and Dg(c,x) = 1 −
〈N(x), N(c)〉 computes the visual and geometrical responses
respectively and λ is a factor used to define the contribution
of the geometrical information into the response.

The final response is then defined as the maximum response
among all radii:

Rf(c) = max
r

(
Rp(c, r)

)
,∀r ∈ S. (15)

Equation 15 uses both the absolute difference between
intensities and the normal surface angles for the pixels in
the contiguous arc of the Bresenham’s circle as well as the
keypoint candidate to rank the maximal points.

Finally, we divide the image into smaller patches with size
w×w (in this work we use w = 5). For each patch we select
the pixel with the largest final response.

2http://kinectdata.com

Fig. 3. Samples of the scale sequence (first row) and non-linear illumination
transformations image sequences (second row).

IV. EXPERIMENTS

We performed several experiments to evaluate the behavior
of our detector. In order to analyze its repeatability, distinc-
tiveness, robustness and time performance, we compared our
approach against standard ones for two-dimensional images,
SIFT, ORB, and SIFT3D (using all three color channels),
for geometric data Harris3D (a 3D version of Harris corner
detector) and NARF, and the Harris6D, which similarly to our
methodology, uses both visual and geometrical data to detect
keypoints.

We used the RGB-D SLAM Dataset presented by Sturm
et al. [16] to evaluate the behavior of the methods regarding
image changes in translation, scale, and rotation in both the im-
age (roll) and horizontal (yaw) planes. This dataset is publicly
available3 and contains several real world sequences of RGB-
D data captured with a KinectTMsensor. Each sequence in the
dataset provides the ground truth for the camera pose estimated
by a motion capture system, which allows the computation
of the homographies relating each image pair by a plane
projective transformation.

In order to test the algorithms for illumination changes, we
built a dataset by capturing a total of 104 images of a cluttered
room starting at dusk (partial illumination) at an interval of one
minute between acquisitions. The images were captured using
a KinectTMsensor with the resolution setted to 640×480 pixels
standing at a fixed position, as shown in Figure 3.

A. Evaluation and Performance Metric

We evaluate and compare our method to others from litera-
ture regarding three concepts: Robustness, Distinctiveness and
Time performance. In order to assess the Robustness of the
methods, we use the Repeatability criteria.

Repeatability: The repeatability rate is computed as de-
scribed by Mikolajczyk et al. [17], which computes the rate
of matched keypoints among image pairs. A match is found
if the intersection area A between two ellipses centred at the
keypoint candidates is greater than a given threshold: A ≥ ε.
In this work we used ε = 0, 4.

Robustness: To test for robustness we evaluate the re-
peatability of the methods over several transformations: trans-
lational, scaling, rotational and illumination as well as artificial
corruptions: contrast, brightness and gausian noise.

3https://cvpr.in.tum.de/data/datasets/rgbd-dataset



For each test, we compute the repeatability score under a
specific image sequence Qt = {q0, q1, ..., qn}, where each
frame qi ∈ Qt along the sequence is increasingly affected
by the targeted transformation. The repeatability score is
calculated among all sequence pairs of the form (q0, qi), where
q0, qi ∈ Qt.

Distinctiveness and time performance: The keypoints
distinctiveness evaluates the detector capability to find good
features for a matching task for 2D descriptors, ORB and
BRIEF [18], 3D descriptors, FPFH [19] and SHOT [18] and
2D+3D descriptors BASE [12] and CSHOT [11]. In order
to evaluate the discriminative power of KVD detector, and
to compare it against other approaches, we matched pairs of
keypoints from several pairs of different images by using a
brute force algorithm and feature vectors extracted by all these
descriptors.

For time performance, we assess the processing time of the
compared methods by averaging the detection time of 900 runs
over entire images. The detection time was measured while the
experiments were running on an Intel Core i7 3.5GHz (using
a single core) processor running Ubuntu 12.04 64 bits.

B. Parameter Settings

In this section, we analyzed the best parameter values to be
used by our detector. For this purpose, we used the RGB-D
Berkeley 3-D Object Dataset [15].

We chose the radii set S = {3, 5, 7, 9} as it represents well
the scale spectrum, given that the Kinect’s reach for the depth
image ranges from 0.3 to 5 meters. It showed a good balance
between time performance and robustness.

In order to choose a value for the geometric threshold tg , we
ran the learning and testing phases for 15, 30 and 60 degrees.
The value which returned the greatest accuracy in keypoint
detection was the one with threshold for 15 degrees for the
additive and concatenation combination.

We experimented with different methods for combining the
geometric and visual features. Figure 4 shows the scale robust-
ness evaluation for four different methods: additive (KVD),
concatenation, texture only, and geometric only. We can see
that fusing information yields a stronger keypoint detector. We
chose the additive approach, since the concatenation spends
twice the memory as the additive and both achieved similar
accuracy (Figure 6). Also the additive approach shows better
robustness to image corruptions noise (noise, brightness and
contrast).

C. Results

We evaluated each detector for robustness to translational,
scaling, rotational and illumination as well as artificial corrup-
tions to contrast, brightness and added noise.

Figure 5 shows the results of the most meaningful tests. Our
detector performs better than other approaches in most of the
presented sequences.

An interesting result can be seen at the illumination change
experiment Figure 5 (c). The figure shows that only KVD
and HARRIS3D (which uses only 3D data), were capable
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Fig. 4. Scale test evaluating our method for four different feature vector
extractions. The image shows that combining both visual and geometric
information yields a stronger keypoint detector.

to continue to provide keypoints under low illumination.
Although HARRIS6D combines both geometric and visual
cues like KVD, it reveals much more dependence on visual
features than our proposed method.

As far as processing time is concerned, when comparing
with other detectors which use geometrical data, KVD was
the fastest approach. It processes 106 pixels per second, taking
0.06 seconds to process an image (and depth map) of size
640× 480 pixels, while its main competitor, the HARRIS6D
detector takes 0.08 seconds for images of the same size.

V. STATISTICAL ANALYSIS

In order to find the best algorithm and to evaluate the
performance of our proposed method against others, we per-
form observation paired and the test of zero mean (using
Confidence Intervals of 95%, as described in Jain [20]. The
comparisons are shown at Figure 6. for CIs including the
zero, it means that we can not infer which method performs
better. Nonetheless, for CIs lying above or below the zero
line means that KVD performed better or worse than the
compared method, respectively. One can readily see that our
method performed statistically better for the majority of the
tests (exceptions for Contrast and Roll Rotation experiments,
where KVD is outperformed by Harris 3D and SIFT 3D
respectively). It is worth noticing that, despite the usage of
more data by the concatenation approach (CAT label), it does
not present better performance than the additive approach.

VI. CONCLUSION

In this work we proposed KVD, a keypoint detector capable
of working with texture and geometrical data. A comparative
analysis in terms of robustness to affine transformations,
processing time and distinctness was conducted against the
standard detectors in the literature.

Thanks to the strategy of combining different cues, our
detector was more stable in the matching experiments. The
combination of visual and geometry information indeed leads
to a significantly better performance when compared to using
either information alone. Moreover, our detector had simi-
lar processing performance and presented high repeatability
scores for images severely corrupted with noise, images with
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Fig. 5. Results for the repeatability experiment. (a) Horizontal translation motion; (b) Scale changing and (c) Nonlinear illumination change. Our method
(KVD) is represented by the blue curve. We can see that, among other detectors using visual information, KVD can still provide reliable keypoints when
visual image is deprecated.
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Fig. 6. We can see that KVD outperforms the others in the majority of the
realized tests.

low contrast, saturated images, and several motion transfor-
mations.
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