
Support model for navigation on sidewalks for
visually impaired persons

Marcelo Cabral Ghilardi
PUCRS, Faculdade de Informática
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Abstract—There are more than 35.7 million people with visual
impairments in Brazil, of these 6.5 million are totally blind or
have great difficulty to see, even with lenses. Although there
are studies related to navigation support in urban environments
for individuals with visual impairments, still exist gaps to be
researched. The main goal of this work1 is to present a model
that, based on computer vision techniques, can help these people
to walk on sidewalks. This model offers an integrated solution for
localization and identification of tactile paving surfaces, detection
of aerial and ground obstacles, and localization of crosswalks.
Experimental results are presented and demonstrate the viability
of this approach.

Keywords-Computer Vision; Image Processing; Accessibility;
Obstacle Detection; Visually Impaired; Tactile Paving.

I. INTRODUCTION

According to data from the World Health Organization2,
there are approximately 285 million visually impaired people
in the world. Among them, 246 million have low vision (less
than 30%), and 39 million are blind. Blind tracks, white
canes and guide dogs are typically used to help visually
impaired people to walk outside [1]. However, even with
these resources, mobility autonomy in outdoor environments
presents a major challenge for them.

Nowadays mobile devices have shown a huge potential
in supporting people with disabilities [2]. In addition, a
wide number of assistive technologies have been proposed
to support people in everyday activities. Several of these
solutions are being developed based on images acquired by
smartphones and GPS information (embedded in many modern
smartphones). However, there are some challenges associated
with the use of such images, as the need to correctly point
the camera to the target subject, image instability and real
time processing. In these solutions, resources as vibration and
sound of the device are used to provide feedback to the user.

Considering this context, the main goal of this work is to
present a model, based on computer vision techniques, for
helping people with visual impairments to walk on sidewalks.
This model offers an integrated solution for localization and
identification of tactile paving surfaces, detection of aerial and
ground obstacles, and detection and localization of crosswalks.

1This work relates to a M.Sc. dissertation
2http://www.who.int/mediacentre/factsheets/fs282/en

To prevent any misunderstandings, crosswalk localization is
here considered the relation between the detected crosswalks
to the user, whilst crosswalk detection is related to its identi-
fication/recognition in image coordinates.

The main contributions of the proposed model are: (1)
Identification of directional and warning paving surface in
three different colors with an accuracy of 88.48%, and the
possibility to achieve real time processing; (2) Crosswalks are
detected with high accuracy rates (about 96.9% of accuracy),
requiring low computation time (about 497 milliseconds per
image); (3) Crosswalks are localized with minor user inter-
vention, with high accuracy rates (about 92.7% of accuracy).
(4) possibility to detect obstacles on the sidewalk analyzing
only the color patterns.

This paper is structured as follows: In Section II we provide
an overview of some related approaches. The proposed model
and implementation are detailed in Section III. In Section IV
we present some experimental results. Finally, our conclusions
and suggestions for future work are presented in Section V.

II. RELATED WORK

There are different solutions to detect crosswalks: some of
them require the user to take photos of the environment [1];
others need very high resolution aerial images [3] or are based
on buzzers to indicate go and stop status [4] in traffic lights.
Other commercial apps can provide spatial guidance for the
user, but none of them propose to detect and locate crosswalks
near the user. In our model, low resolution satellite and road
map images are combined with GPS coordinates, without
depending on buzzers or photos taken by the user. Moreover,
it could be easily adapted to different crosswalks standards.

The shape and color of tactile paving surface do not have
a universal standard, each country or region define their own
pattern. For this reason, developed solutions has applicability
in specific locality ([5], [6], [7]). Another approach [8] pro-
poses to place RFID tags on all tactile paving surfaces, but it
depends on regulation and has a higher cost. Researches with
goals similar to our approach detect specific colors paving and
specific layout and do not work with tactile paving used in
Brazil. Our approach detects directional and warning paving
surfaces in three different colors used in Brazil.
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There are already good solutions to detect ground ob-
stacles [9], [10], [11], however they usually use ultrasonic
sensors, cameras with depth sensors or stereo cameras to detect
these obstacles. In our approach, the obstacle detection com-
plements the tactile paving surfaces detection, being integrated
in the same algorithm, without the need of a special hardware.

III. MODEL DESCRIPTION

The proposed model is composed of four parts, as shown
in Fig. 1. In this model the feedback is audible and the input
data consist of images, signals of ultrasonic sensor, and GPS
coordinates.

Fig. 1. Main model and its component parts.

For the detection of tactile paving surfaces and ground
obstacles a smartphone camera or webcam is used to get
the images, with a resolution of 320x240 pixels or higher in
landscape orientation. The camera is attached to the user’s
abdomen, positioned at an average height of 1.0 meter and
with a 45 ◦ angle relative to the ground.

In the detection and localization of crosswalks, the input
data corresponds to GPS coordinates obtained by a smartphone
and satellite and road map images obtained through the Google
Maps API. Each image is a matrix with 640 × 640 size of
resolution, with a zoom of 20× (i.e., the image height from the
ground), corresponding to an area of 6890m2, approximately.

For detecting aerial obstacles an ultrasonic sensor was used
coupled in a hat on the user’s head to give information about
distances of objects. Details about each part of the proposed
model are presented in the following subsections.

A. Tactile paving surface

The automatic detection of tactile paving surface is an
important topic of research, since it can help in the mobility
of visually impaired persons, but also can be used for the
displacement of autonomous robots, providing a safely route
and warnings. There are two types of tactile paving surface:
guidance path or directional (Fig. 2(a)), which indicates the
user a secure way, and warning surface or alert (Fig. 2(b),
used to warn the user to get more attention because of an
obstacle, such as a step or entrance of cars. In Brazil, these
tactile pavings appear with several color patterns, such as blue,
yellow and gray.

a) Area Detection: This is the first step of the algorithm,
in which each frame of the video is compressed into a smaller
image, reduced as close as possible to 320 pixels width
while maintains its proportion. The compressed image is then

(a) Directional (b) Warning

Fig. 2. Tactile paving surfaces.

converted to the YCbCr color space, or Chrominance, and a
histogram for each channel (Y, Cb and Cr) is generated.

The histogram of the images presents peaks concerning the
colors of the tactile paving surfaces. Those peaks combined
with threshold methods are used to determine the possible
tactile paving surface area in the image. Since it has different
colors, we defined two configurations to represent their areas
in the histogram: Type A that works better with brighter colors
as yellow or blue; and Type B that works better with opaque
colors as gray. This process generate a total of 6 thresholds
values for the 3 channels of the image (Min/Max Y, Min/Max
Cr and Min/Max Cb). Those thresholds, when applied to the
image, can delimit the possible tactile paving surface area.

After applying the thresholds, erosion and dilation morpho-
logical operators are applied to the possible area of the tactile
paving surface to eliminate false positives. The usage of Type
A or Type B is determined by the lack of detection of ”parallel
lines” in the image. Here we considered as ”parallel lines” the
border lines of the tactile paving surface that point to the same
direction but are not necessarily equidistant, being able to cross
at some point. The algorithm starts using Type A detection and
if in one frame, no ”parallel lines” are detected, then the last
detected lines will be used. However, if the frame in which
these lines were detected is 3 or more frames before the current
frame, then the algorithm will change the type of detection.
This feature aims to keep the tactile paving surface detection
as constant as possible without allowing the user to walk on
possible false positives for too long.

b) Borders Detection: Since the tactile paving surface
is delimited by long straight lines, one solution to detect
these ”parallel lines” is to use the Canny edge detector[12].
However, as the detected lines need to be smooth, and it is
necessary to remove the noise, a median blur filter is applied to
the image before running the edge detection algorithm. Then,
Hough Lines Transform[12] is used on the resultant image.
The results of these steps can be seen in Fig. 3.

(a) Original Image (b) Canny and Blur (c) Hough Lines

Fig. 3. Algorithms for detecting the edges.

Since the detected lines are often overlapped and represent
the same line in the original image, we implemented a function



that merges the detected lines that are close together and have
similar angles. However, even so, there are still more than two
lines in the results. Then, we choose the two most vertical
lines that are also ”parallel” to each other and whose distance
specifies an area compatible with a tactile paving surface.

c) Validation Testing: The detection of the ”parallel
lines” does not ensure that they are the borders of a tactile
paving surface. Thus, the image is segmented into blocks of
25x25 pixels that are numerated and the GLCMs are calculated
for each one in eight different directions.

Since the Canny edge detector is not suitable for the
detection of small edges variations, we used the Laplace
operator to detect edges before applying the GLCM. Moreover,
to improve the performance just the lower half of the image
is processed. The resultant block division can be observed on
Fig. 4: green blocks will be analysed and blue ones discarded.

Fig. 4. Block segmentation.

For each generated GLCM, in each block, we extract the
values of entropy, contrast, homogeneity and uniformity (or
energy). A spreadsheet containing 624 entries from blocks was
created, and for each entry all values were stored for each of
the four directions and two distances. Using RapidMiner3, we
extracted a decision tree from these values that allow to predict
the type of the block: alert or directional tactile paving surface,
or Noise, which means everything else. In order to determine
it, we used the following rules:

• Alert: If two neighbors blocks of the up, right, left or
down directions are of type Alert, then the image is
considered to have an alert tactile paving surface;

• Directional: If the first rule does not apply and 2x2
blocks of Directional type is found, then the image is
considered to have a directional tactile paving;

• Noise: If none of the two previous rules apply, then the
image is considered as a noise (without tactile paving).

B. Ground Obstacles

Ground obstacle detection is another part of the model,
which is fully integrated with the detection of tactile paving.
It was developed because in Brazil there are few sidewalks
with tactile paving. Thus, people with visual disabilities need
to walk on sidewalks that often have several obstacles. In
general, these obstacles are detected by then through long
cane, however, the ability to anticipate danger can be a benefit
for these people. In our model, any element that may impede
or hinder the passage is considered an obstacle, such as holes,
steps, walls and corner, as illustrated in Fig. 5.

3https://rapidminer.com/products/studio/

(a) Flowerbed (b) Corner (c) Wall

Fig. 5. Examples of obstacles on sidewalks.

After capturing the image of the sidewalk in front of the
user, starts the search by the presence of directional tactile
paving. If found, the user is guided to walk on the tactile
paving. If there is a warning tactile paving, the user receives an
alert sound. In the absence of tactile paving, starts the search
by obstacles on the sidewalk. Textures patterns are identified
on the sidewalks, and if there is a place with divergent pattern,
is issued a alert sound to user.

We chose to work with the detection of inconsistency or
change in color pattern, based on the assumption that this
inconsistency can mean an obstacle. With a visual analysis
of the sidewalks images, we detected that most obstacles
in a sidewalk have a different pattern or color of the rest
of the sidewalk. Fig. 6 presents a flowerbed and a car, this
are examples of obstacles. This process does not detect all
obstacles, but can be processed quickly and uses the same
pre-processed image for the detection of tactile paving.

Fig. 6. Image example divided into blocks.

The obstacle detection starts with the division of the image
into 12 blocks, as shown in Fig. 6. The blocks closer to the user
correspond to approximately 90cm and an average human step
has around 85cm, which means that we is possible to predict
obstacles one step forward of user. The block 8 is closest to
the user, and is then considered as a reference block. When
the other blocks have different characteristics of the reference
block, they are considered obstacles. In Fig. 6 we can see two
obstacles: a flowerbed, located in blocks 1 and 2; and a back
of a car located in block 9. In all these blocks is possible to
see a different color pattern.

For each block is processed: the average value of the
channel Cb and Cr, the difference between these values,
and the corresponding values of the reference block, Diff Cb
and Diff Cr. Using empirically defined thresholds, the blocks
that may be possible obstacles are selected. To improve the
processing speed, only the blocks next to the user are checked.
After processing, if a block is considered as a possible obstacle
an alert tone is emitted to the user.



C. Aerial Obstacles

The detection of aerial obstacles is the third part that makes
up the model. We choose to use an ultrasonic sensor that can
provide the distance of obstacles in relation to the user. The
sensor is always active and gets the distance to any object that
is in front of it. When the sensor detects an obstacle in a short
distance from of the user, an alerts is emitted.

For this detection, it was necessary to set up and program
an equipment. As shown in Fig. 7, the sensor is placed in
a hat that the user must wear. The distance information of
objects that are in front of the user is sent via bluetooth to a
smartphone that interprets the information and, if necessary,
sends an audible feedback to the user.

Fig. 7. Implementation of the part of the model to detect aerial obstacles.

The prototype was designed so that the user can stay with
hands free, with the smartphone in the pocket or attached
to the body. The prototype is composed of: ultrasonic sensor
(HC-SR04 model), Bluetooth module (HC-05 model), Arduino
UNO R3 board, battery, smartphone and headset (optional).

Every 500ms the Arduino board capture sensor information.
The smartphone receives this information via Bluetooth and if
the distance is less than 1 meter, the user is notified to stop, if
the distance is between 1 and 2 meters, the user is notified to
be careful. The sensor used in the prototype detects obstacles
at an angle of 15 degrees. Thus, only obstacles near to the
user’s head are detected. To detect a larger area, is necessary
to use more sensors.

D. Crosswalks Detection and Localization

Detection and localization of crosswalks is the fourth and
last part of the proposed model. It provides the distance of the
crosswalks and the corners from the user. This is an important
information to plan the navigation, in order to help the user
to cross the streets more safely.

With the advent of smartphones equipped with GPS and
internet access, it has become easier to obtain geographical
coordinates. We use these information to get satellite and road
maps of the user locale images, exemplified in Fig. 8. Then,
computer vision techniques are applied on these images to
detect the crosswalks, as followed described.

Geographic coordinates captured by the user’s smartphone
are sent to a Web service. This web service uses Google Maps
API to get the satellite and the respective road map image,
which are goint to be processed.

The first step of the image processing module relates to
image segmentation, which consists of defining a region of
interest where crosswalks could be included (on the road or

(a) Satellite image (b) Roadmap

Fig. 8. Satellite and Roadmap images.

near road regions). For this, both input satellite image and road
image (assigned to R) are converted to grayscale. The region
of interest B is generated by a simple thresholding approach.
The segmentation is obtained by thresholding each pixel (x, y)
of R by λ (where λ = 245, set experimentally). Fig. 9(b)
illustrates the output of the thresholding approach.

As we can see in Fig. 9(b), there are several undesirable
structures in the binary image (text, arrows, etc). By trying
to eliminate such undesirable structures, a post-processing
morphological operation was applied to this binary image
(a combination of erosions and dilations). The output of
the morphological operations, illustrated in Fig. 9(c), was
then combined with the respective grayscale satellite image
(Fig. 9(d)).

(a) (b) (c) (d)

Fig. 9. Image segmentation: (a) input satellite image converted to grayscale;
(b) initial segmentation of the road map; (c) output of morphological opera-
tions; (d) combining the satellite image with the region of interest.

a) SVM Classifier for crosswalk detection: To detect
crosswalks from satellite images we propose to train a Support
Vector Machine (SVM) classifier. To this end, we built a
dataset containing several positive and negative sample patches
(with size equals to 30 × 30 pixels in each patch), used for
cross-validation. This dataset is composed by 370 patches
of crosswalks (positive samples) and 530 patches of non
crosswalks (negative samples), illustrated in Fig. 10, which
were manually extracted from Google Maps using its API
(considering grayscale input images with 640×640 of resolu-
tion, captured by a zoom of 20×). As we can see in Fig. 10,
image patches vary according to illumination conditions, and
angle orientation and shapes, regarding the zebra pattern. Next,
the dataset was divided into training and test set, with 600
and 300 independent patches, respectively, on which a 10-
fold cross-validation was used to optimize (hyper)parameters
of SVM.

We used the Local Binary Pattern (LBP) feature extraction
method to train our SVM. We have also tried to use the well
known Gray Level Co-occurrence Matrix (GLCM) [13] feature



(a) Positive patches (b) Negative patches

Fig. 10. Manually extracted patches of positive (a) and negative (b) samples.

extraction, and a combination of both.
b) Detection Method: After training the SVM classifier,

the next stage of the proposed model was crosswalk detection.
In a practical situation, we shall consider an input satellite
image (640×640 size of resolution), delimited by the region of
interest, as illustrated in Fig. 9(d). This input image is divided
into small cells, with size equals to 15× 15.

If a 30 × 30 reference patch is considered a crosswalk, a
second verification is performed. In this second verification,
eight neighboring patches (30 × 30) are created around the
reference patch, considering their neighboring cells. If at least
one of these eight neighboring patches is also considered a
crosswalk, the reference patch is then set as a crosswalk,
otherwise the reference patch is discarded.

c) Localization Method: Given detected crosswalks, the
next stage relates to making a spatial relation between the user
and crosswalks. Firstly, we assume the user would always send
his/her GPS coordinate when facing a street and, by doing so,
we can easily estimate which street he/she is by analyzing
the binary image (Fig. 9(c)) and his/her informed position
(illustrated in Fig. 11 by a red dot). If the user is at a corner,
we assume that he/she is facing towards the corner.

Following the estimated street line in both directions (left
and right), as shown in Fig. 11, and also after analyzing the
binary image, we can find corner intersections when facing
another street (if that exists), and consequently, define the
block the user is positioned. Such information is used to
discard detected crosswalks that are not connected to the block
where the user is. Corner detection could also be used to give
the user additional feedback.

In order to inform the user about the nearest crosswalk, if
two or more crosswalks are detected, we firstly compute the
distance from the user to each of them, following the street
line edges. In case two or more crosswalks have approximately
the same distance in relation to the user, he/she is informed
about the two nearest ones.

Fig. 11. Illustration of street lines, corners, blocks and crosswalks connected
to the block in which the user is (information used for crosswalk localization).

Our prototype provides voice feedback to the user con-
sidering the user can be facing the corner or the street,
as previously mentioned. In this way, regardless the user’s
position in relation to cardinal directions, feedback is provided
in relation to his/her right and/or left. The provided feedback
informs the distance to the nearest crosswalk (or crosswalks)
on the block the user is positioned (considering only the street
in front of the user and those that intersect it, which means
that if the whole block is visible in the satellite image, we can
discard crosswalks located on streets far away from the user).

IV. EXPERIMENTAL RESULTS

All the experiments were done in a notebook with a Intel
Core i5 processor, 2.27GHz and 4GB of memory. For imple-
mentation, we used C++ programming language, OpenCV[14]
library version 3.0, C#.NET framework 4.5 and AForge.NET
framework. To obstacle and tactile paving detection the images
was obtained on webcam model Microsoft LifeCam HD 3000.

a) Tactile paving evaluation: A total of 521 images com-
pose the GT: 320 are sidewalks with tactile paving surfaces and
201 are sidewalks without it. We used accuracy, sensitivity and
specificity as evaluation measures, the specificity of 93.53%
indicates that images without tactile paving surfaces are cor-
rectly predicted in most cases. We consider the specificity
important for user safety, since it indicates less false positives.
The sensitivity result of 85.31% and the accuracy of 88.48%
demonstrates the overall efficiency of the presented approach.
The processing rate was separately measured through the
execution of the detection process on 7715 frames sample and
the extraction of the average processing time. The obtained
processing rate was 16.27 fps, approximately.

b) Crosswalk detection evaluation: To feature extraction
method, different methods and some combinations of them
were evaluated. First, our database with 900 image patches
was randomly divided in a stratified way into a training
set (with 600 samples) and an independent test set (with
300 samples). The training set was used in a 10-fold cross-
validation to assess the performance of SVM for different
hyper-parameters. The overall best result was obtained by
LBP method, reaching about 94.6% of accuracy in crosswalk
detection, with sensitivity of 95.7% and specificity of 93.9%.

To evaluation of the crosswalk detection method, 100 satel-
lite images were extracted from Google Maps (considering
grayscale input images with 640×640 of resolution, captured
by a zoom of 20×), taking into account the input GPS
coordinate given by the user. To simulate the GPS coordinate
informed by the user, we randomly selected N = 100 coordi-
nate positions using Google Maps API (all coordinates were
extracted from locations close to streets, simulating previously
mentioned conditions that the user is facing the street or a
corner). For each extracted satellite image a ground truth was
manually generated by the user: each satellite image is defined
by a binary image with crosswalk regions delimited by almost
rectangular boxes. Such information is used for quantitative
evaluation. Each ground truth image is confronted with the
estimation given by the proposed model. The comparison is



made in the level of patches instead of pixels, considering
that ground truth images are discretized by patches with
30 × 30 of size. In this experiment, the proposed model
achieved a sensitivity of 87.5%, a specificity of 97.8% and
an average accuracy of 96.9%, with standard deviation of
2.841, which we consider as a satisfactory accuracy rate. The
average computational cost to process each image was 497
milliseconds, with standard deviation of 244.

For crosswalk localization we randomly chose a set of 100
geographical coordinates (simulating user’s input), represent-
ing a wide number of situations, i.e., areas with crosswalk
in front of the “user”, on his/her right/left, as well as areas
without crosswalks and areas with badly painted crosswalks
or with partial occlusions. We created a ground truth data
associated to expected feedback for each extracted image. The
proposed model provided the expected feedback in 92.7% of
the simulated cases (accuracy) with an average specificity of
95% and sensitivity of 91.5%.

c) Preliminary tests with volunteers: We also conducted
some tests with volunteers, not blind, for detecting tactile
paving and ground obstacles. Through these tests it was
possible to obtain their perceptions in the use of the prototype.
Each volunteer should perform two tasks: (1) walk on a
sidewalk with tactile paving, blindfolded, with only the white
cane used by visually impaired; (2) walk on a sidewalk with
tactile paving, blindfolded, with only the model prototype.
Considering their answers to a survey, 83% of the volunteers
agreed that the equipment provides greater sense of security,
66% agreed that running the route with the equipment has
been easier than with the white cane and 83% agreed that the
feedback is intuitive and enjoyable.

V. CONCLUSION

In this work we proposed a new model to support navigation
on sidewalks for the visually impaired persons. It provides
crosswalk detection and localization, tactile paving detec-
tion, and detection of aerial and ground obstacles, with low
computational cost and minor user intervention. The images
used for processing can be acquired by the user through his
smartphone or camera fixed to his body, keeping the hands
free. Computer vision algorithms are combined with machine
learning techniques to provide information to the user.

Despite the challenges of illumination changes, occlusion,
image noise and resolution, experimental results indicated that
the implemented approach effectively detect the tactile paving
surface achieving about 88.48% of accuracy. Regarding the ex-
periments with crosswalks, the results indicated that the model
effectively detected crosswalks in 96.9% of cases, achieving
about 92.7% of accuracy in relation to their localization. We
believe that our goals have been achieved and the proposed
model can be used to support visually impaired persons.

Two papers about this research have been published: one
full paper was accepted for presentation and publication in
the 2016 International Conference on Computational Science
(ICCS) proceedings [15]; another full paper is being published
in the IEEE Computer Graphics and Applications journal [16].

These publications in a qualified event and journal demonstrate
the quality of the developed work.

For future work we intend to use other resources available
on smartphones, such as the compass and/or accelerometer, in
order to increase crosswalk localization accuracy, as well as to
develop a case study with visually impaired people to evaluate
the real applicability of the proposed model.
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