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Fig. 1. Top row: graph-based interactive image segmentation using intelligent arc-weight estimation (first three images) and the LiveMarkers paradigm
for single and multi-object segmentation (next two images). Middle and bottom rows: interactive video segmentation results using FOMTrace to separate
foreground and background with overlapping color distributions and to delineate multiple objects simultaneously, respectively.

Abstract—Interactive segmentation is often necessary for image
and video editing applications, which demand for effective
and efficient methods capable of aiding the user to accurately
extract objects of interest from the background with minimum
involvement. The main goal is to place those objects on to
new target images and videos, thereby avoiding the need to
use green screens to acquire the footage. In this PhD research,
we have devised methods that may be used by amateurs and
professionals alike for interactive image and video segmentation,
aiming to minimize the user’s effort and time required to obtain
an accurate result. In particular, we have developed two methods
for interactive image segmentation, and one for interactive
video segmentation that outperforms/competes with a state-of-
the-art commercial software. Our methods have also aided in
interdisciplinary research with Geology, Psychology/Psychiatry
(body pose estimation for early Autism assessment), and 3D
medical imaging.

I. INTRODUCTION

In recent years,1 regular users have changed from mere

consumers to active producers of multimedia data commonly

1Ph.D. research conducted between March 2010 and September 2015.

shared in the social networks [1]. In this scenario, photo

and video editing are core tasks to many applications (e.g.,

Snapshat and PhotoGrid), which very often call for object

segmentation. Image and video object segmentation aim to

separate from the background the set of pixels perceived

as belonging to the foreground (Figure 1). Those objects

may be further enhanced with digital filters and matte onto

other images and videos (Figure 2). Segmentation is also

an important pre-processing step for problems such as body

pose estimation [2], human action recognition [3], sedimentary

petrography [4], and remote sensing [5]. The broad definition

of foreground and background in natural scenes makes very

hard to develop automatic algorithms to separate them.

User intervention is therefore necessary when the spatial

extent of objects in images and videos must be accurately

defined. Interactive image segmentation techniques usually

exploit the synergism between user-provided foreground lo-

cation and computer-based foreground delineation, in order to

increase effectiveness [6], [7]. Humans are capable of locating

the object in an image with a few mouse clicks (Figure 2) and



Fig. 2. Interactive image segmentation with user-drawn scribbles to solve foreground location, applied to matte the foreground with a new background.

pointing out delineation errors, while the machine is better

equipped to precisely delineate objects, even if inaccurately.

A bad alternative would be the complete manual delineation

of the foreground, a cumbersome and impractical procedure

in any setting. Moreover, image and video segmentation is an

intrinsically ill-posed problem, requiring the user to resolve

ambiguities when connected parts of the foreground and

the background share similar properties (Figure 3). Those

problems further escalate in interactive video segmentation,

since each frame is an image that must be delineated with

temporal coherence [8], [9] (e.g., Figure 5).

Segmentation is particularly challenging because the com-

puter must fill in the semantic gap between the user’s knowl-

edge about the object of interest and the raw input data (image

pixels and video frames). This difficulty makes interactive

segmentation not a single shot task. It requires the user to

draw a set of scribbles to locate the object for the computer

to perform a first delineation. Then, the user must verify

if the result is correct and add more scribbles when errors

occur. This is an iterative process that may heavily burden

the user, who may even have to delete markers that were

inadvertently misplaced due to fatigue and/or carelessness.

This is particularly troublesome in video segmentation, since

the objects are dynamic and may change in shape, topology,

and even color/texture from one frame to another. Those issues

lead to the following questions: i) how do we incorporate

a minimum of the user’s knowledge about the object of

interest for image segmentation? ii) how do we propagate

that information to the remaining pixels? iii) how do we

build more complete models of that knowledge from accepted

segmentations? and iv) how do we minimize the user’s effort

without loosing his/her control over the process?

This PhD research [10] sought to answer the above ques-

tions, by interpreting images and videos as weighted graphs

in which the sparsely annotated information (user-drawn scrib-

bles in images and segmented frames in video) could be prop-

agated to the unlabeled data. In images, we studied arc-weight

estimation techniques to facilitate propagation, and strategies

to enhance user interaction for error correction. In video, we

constructed object shape knowledge models from the user-

segmented frames that automatically correct the propagated

segmentation across time to minimize the need of further

user intervention. We briefly describe those contributions next,

along with results obtained for studies in 3D medical imaging,

Geology, and early Autism assessment research. We then

present a list of publications in Section III resulting from this

research, as well as a summary of awards and press coverage

in Section IV, before stating our conclusions in Section V.

II. SCIENTIFIC CONTRIBUTIONS

A. Intelligent Arc-Weight Estimation for Interactive Image

Segmentation

A natural way of exploiting the connectivity between the

scribble pixels and the unannotated ones for propagating the

object information is to make direct/indirect use of some

image-graph concepts, such as arc weight between pixels [11].

The weight may represent attribute functionals such as sim-

ilarity, speed function, affinity, cost, and distance; depending

on different frameworks used for delineation, such as wa-

tershed [12], random walks [13], laplacian coordinates [14],

level sets [15], fuzzy connectedness [16], graph cuts [17], and

optimum path forests [18]. The effectiveness of segmentation

in all of those frameworks is due to the quality of such arc-

weight estimation, which can exploit local image properties

and/or global object information (Figure 3).

In several methods [17], [19], [20], [13], [11], global object

information is obtained from the user-drawn scribbles. They

learn a pattern classifier from the foreground and background

labeled pixels aiming to enhance those differences (Figures 3a-

c). Although this is critical for segmentation and works well

when the foreground has significantly different colors from

the background, when the color distributions overlap (i.e., if

we are interested only in the first zebra in Figure 3), such

an estimation fails if all scribble pixels are used for training

(Figures 3d-e). Some pixels of the drawn markers represent

different image properties, useful to distinguish object and

background, for improving arc-weight estimation. However,

their automatic identification is challenging during delineation.

Some approaches have even proposed to perform interactive

arc-weight estimation in a prior step [11], to prevent careless

re-estimation that drops performance and reduces user con-

trol [19], [17], [20], [13].

We have proposed in [21] an intelligent way to select only

the best scribble pixels for arc-weight estimation transparently

to the user, aiming to provide high quality arc weights that

facilitate segmentation with minimum user effort (Figures 3d

and 3f). The basic idea is to cluster all of the image pixels

and to select for object enhancement via pattern classification

only the foreground and background seed pixels that fall in

distinct clusters. Then, the final delineation considers all seed
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Fig. 3. (a) Initial scribbles created by the user. (b) Object enhancement map obtained through pattern classification. (c) Gradient image where brighter regions
represent higher arc weights. (d) New set of markers selected for image segmentation. (f) The new set of markers selected for object delineation yields poor
classification and arc-weight estimation if used entirely for training. (e) Delineation result with our intelligent method using directly the scribbles from (d).

pixels (Figure 3f). We have also proposed a procedure to

determine when and where the weights can be recomputed

to increase accuracy without loss of user control. This work

resulted in an award wining conference paper and an invited

journal publication (Section IV).

B. Interactive Image Segmentation using Live Markers

In spite of our best efforts, arc-weight estimation may still

fail for complex situations. We must guarantee in those cases

that the user is still able to accurately fix delineation errors

with minimum effort. In this sense, in scribble-based image

segmentation methods derived from several frameworks [18],

[16], [12], most error correction occurs near the object’s border

(Figures 4a-c), in places with little boundary evidence due to

arc-weight estimation being unable to increase the contrast be-

tween foreground and background. Those are critical locations

that call for careful placement of scribbles (markers) to protect

foreground and background from leaks in segmentation. This

is often hard to be achieved by the user with scribbles, thereby

requiring more time and attention.

At the same time, boundary-tracking techniques [22], [23]

provide a different form of user interaction for image seg-

mentation. Instead of adding scribbles, the user adds anchor

points near the object’s boundary and guides the computer

in the selection of boundary segments that divide foreground

and background (Figure 4b). Scribble- and anchor point-

based image segmentation paradigms have complementary

strengths and weaknesses that can be addressed to improve

the interactive experience by reducing the user’s effort. We

have proposed in [7] a hybrid paradigm based on a form of

interaction called live markers, in which optimum boundary-

tracking segments are turned into internal and external markers

for region-based delineation to effectively extract the object

(Figures 1 and 4).

We proposed four techniques within this paradigm: Live-

Markers, RiverCut, LiveCut, and RiverMarkers. The homonym

LiveMarkers couples boundary-tracking via live-wire-on-the-

fly [22] (LWOF) with optimum seed competition by the Image

Foresting Transform [18] (IFT-SC). The IFT-SC can cope with

complex object silhouettes, but presents a leaking problem on

weaker parts of the boundary that is solved by the effective

live markers produced by LWOF. Conversely, in RiverCut

the long boundary segments computed by Riverbed [23]

around complex shapes provide markers for Graph Cuts by

the Min-Cut/Max-Flow algorithm [17] (GCMF) to complete

segmentation on poorly defined sections of the object’s border,

thereby avoiding GCMF’s well known shrinking bias. LiveCut

and RiverMarkers further demonstrated that live markers can

improve segmentation even when the combined approaches

are not complementary. Moreover, since delineation is always

region-based, our methodology subsumes both paradigms,

representing a new way of extending boundary-tracking to

the 3D image domain (Figures 4d-e), while speeding up the

addition of markers close to the object’s boundary.

C. Interactive Video Segmentation using FOMTrace

In video segmentation, besides the challenges present in

image segmentation such as high color overlap between fore-

ground and background, the developed techniques must also

handle fast-moving and deformable objects, simultaneous seg-

mentation of multiple objects, possible occlusions, topology

changes, among others. Therefore, instead of requiring the user

to apply the aforementioned interactive image segmentation

tools for every frame, we have proposed in [24] an inter-

active video segmentation method, named FOMTrace, which

addresses the problem in an effective and efficient way.

From a user-provided object mask in a first frame (Fig-

ure 5a), our method performs automatic video segmentation

on a spatiotemporal superpixel-graph, and then estimates a
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Fig. 4. (a) Initial segmentation using scribbles. (b) Activation of boundary-tracking with one anchor point, and optimum path (yellow line) computed until
the current cursor position (white cross). (c) Automatically generated live marker with internal and external seeds from the border segment and updated
delineation. (d)-(e) 3D brain image segmentation result using LiveMarkers.

Fuzzy Object Model (FOM) that refines segmentation of the

second frame, by constraining delineation on a pixel-graph

within a region where the object’s boundary is expected to

be. The propagation of segmentation makes use of the same

graph-based techniques we applied in the image case, but using

the object mask to annotate superpixels instead of considering

only the information provided by the user-drawn scribbles.

The FOM incorporates the user’s higher level knowledge

about the object’s shape, learned from the object mask, to

preemptively correct errors in the propagated delineation from

the previous frame. The user can accept the refined object

mask in the second frame or correct it with our image tools,

which is then similarly used to improve the spatiotemporal

video segmentation of the remaining frames (Figure 5b-e).

Both steps are repeated interchangeably, within interactive

response times, until the segmentation refinement of the final

frame is accepted by the user. FOMTrace has achieved superior

or competitive results when compared with state-of-the-art

approaches for interactive video segmentation, supervised and

unsupervised object tracking, the first corresponding to the

primary tool of a commercial software [24] (Adobe After

Effects).

D. Secondary Applications

Segmentation of sandstone grain images: Segmentation

is paramount for measuring sandstone grain properties such

as roundness and sphericity, which allow us to infer about

provenance and transport in sedimentary petrography. We

have devised a pipeline in [4] to segment sandstone grain

images, consisting of an automatic step in which the grains

are separated first from the background and then from each

other, a key novelty with respect to the literature, followed by

interactive corrections wherever necessary using LiveMarkers

(Figure 6).

Body pose estimation in video for early Autism assess-

ment: Autism Spectrum Disorder (ASD) affects millions of

people worldwide. Early intervention, initiated in preschool

and sustained for at least 2 years, can substantially improve

child outcome, specially if done before the full set of be-

havioral symptoms appears [25]. In spite of this, the average

diagnosis age in the U.S. is of 5 years, given the lack of

specialists to offer these assessments to the very young. The

PhD research carried out during a sandwich period at the

University of Minnesota, USA, aimed to develop computer

vision tools that could aid general practitioners in the future

in early detection of ASD signs, for faster diagnosis by expert

clinicians. In particular, we have developed a facial tracking

method in video, to estimate attention and gaze, and a body

pose estimation technique to evaluate atypical motor patterns,

such as asymmetrical arm positioning in unsupported gait of

toddlers. The latter is an extension of our FOMTrace video

segmentation method (Figure 7).

III. SCIENTIFIC DISSEMINATION OF OUR RESULTS

During the course of the PhD research, a total of 6 peer-

reviewed journal papers and 7 conference papers were pub-

lished in high quality avenues. The publications include three

journals with Qualis A1 (two of which with Impact Factor

above 3.6), one with Qualis A2, one with Qualis B1, and one

open access journal from Psychology/Psychiatry. For greater

details, please refer to the list of publications below, which

includes supplementary works such as technical reports and

awarded conference abstract/posters.

A. Published peer-reviewed journal papers

1) Spina, T. V., Miranda, P. A. V., and Falcão, A. X. (2014). Hybrid
approaches for interactive image segmentation using the Live
Markers paradigm. IEEE Trans. Image Process.. Imp. factor:
3.625. Qualis A1.

2) Hashemi, J., Tepper, M., Spina, T. V., Esler, A., Morellas, V.,
Papanikolopoulos, N., Egger, H., Dawson, G., and Sapiro, G.
(2014). Computer vision tools for low-cost and noninvasive
measurement of autism-related behaviors in infants. Aut. Res.
Treat.

3) Mingireanov, I. F., Spina, T. V., Falcão, A. X., and Vidal,
A. (2013). Segmentation of sandstone thin section images
with separation of touching grains using optimum path forest
operators. Comput. Geosci.. Imp. factor: 2.054. Qualis A2.

4) Minetto, R., Spina, T. V., Falcão, A. X., Leite, N. J., Papa,
J. P., and Stolfi, J. (2012). IFTrace: Video segmentation
of deformable objects using the Image Foresting Transform.
Comput. Vis. Image Underst.. Imp. factor: 1.540. Qualis A1.

5) Miranda, P. A. V., Falcão, A. X., and Spina, T. V. (2012).
Riverbed: A novel user-steered image segmentation method
based on optimum boundary tracking. IEEE Trans. Image
Process.. Imp. factor: 3.625. Qualis A1.

6) Spina, T. V., Miranda, P. A. V., and Falcão, A. X. (2012b). Intel-
ligent understanding of user interaction in image segmentation.
Intl J. Pat. Recog. Artif. Intelli.. Imp. factor: 0.669. Qualis B1.

B. Published peer-reviewed conference papers

1) Falcão, A. X., Spina, T. V., Martins, S. B., and Phellan, R.
(2015). Medical image segmentation using object shape models:
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Fig. 5. FOMTrace segmentation result of the video of a fast-moving figure skater on the top row, after interactive initialization in the first frame (t = 0).

Fig. 6. Automatic sandstone grain segmentation with interactive correction.

Fig. 7. Body pose estimation in video using Fuzzy Object Models. The third and fourth images depict our object shape model representing the human body,
which is closely related to the one in FOMTrace.

A critical review on recent trends, and alternative directions. In
Computational Vision and Medical Image Processing.

2) Spina, T. V. and Falcão, A. X. (2014). Robot users for the
evaluation of boundary-tracking approaches in interactive image
segmentation. In ICIP. H5-index 38. Qualis A1.

3) Rauber, P. E., Spina, T. V., Rezende, P., and Falcão, A. X.
(2013). Interactive segmentation by image foresting transform
on superpixel graphs. In SIBGRAPI.H5-index 13. Qualis B1.

4) Hashemi, J., Spina, T. V., Tepper, M., Esler, A., Morellas, V.,
Papanikolopoulos, N., and Sapiro, G. (2012). A computer
vision approach for the assessment of autism-related behavioral
markers. In ICDL-EpiRob. H5-index 18. Qualis B2.

5) Spina, T. V., Falcão, A. X., and Miranda, P. A. V. (2011). User-
steered image segmentation using live markers. In CAIP. H5-
index 12. Qualis B2.

6) Miranda, P. A. V., Falcão, A. X., and Spina, T. V. (2011). The
riverbed approach for user-steered image segmentation. In ICIP.
H5-index 38. Qualis A1.

7) Spina, T. V. and Falcão, A. X. (2010). Intelligent understanding
of user input applied to arc-weight estimation for graph-based
foreground segmentation. In SIBGRAPI. Honorable mention
award. H5-index 13. Qualis B1.

C. Other publications

1) Spina, T. V. and Falcão, A. X. (2016). FOMTrace: Interactive
video segmentation by Image Graphs and Fuzzy Object Models.
Technical report, CoRR – arXiv. https://arxiv.org/abs/1606.
03369.

2) Spina, T. V., Tepper, M., Esler, A., Morellas, V., Papanikolopou-
los, N., Falcão, A. X., and Sapiro, G. (2013). Video human
segmentation using fuzzy object models and its application to
body pose estimation of toddlers for behavior studies. Technical
report, CoRR – arXiv. https://arxiv.org/abs/1305.6918.

3) Spina, T. V., Hashemi, J., Tepper, M., Esler, A., Morellas, V.,
Papanikolopoulous, N., Falcão, A. X., and Sapiro., G. (2012a).
Segmentation and body pose estimation of toddlers at risk of
autism using clouds. Human Activity and Vision Summer
School (HAVSS). Awarded poster.

IV. WORK RECOGNITION

The PhD research has received two awards and press

coverage both in Brazil and abroad. We list next the main

articles released in Brazilian press and the received awards.

• Awards

https://arxiv.org/abs/1606.03369
https://arxiv.org/abs/1606.03369
https://arxiv.org/abs/1305.6918


1) Top 3 best poster award at the Human Activity and Vision
Summer School (HAVSS 2012) for the work “Segmentation
and Body Pose Estimation of Toddlers at Risk of Autism
Using Clouds.”

2) Honorable mention for the Best Student Paper Award at
the 23rd Conference on Graphics, Patterns, and Images
(SIBGRAPI 2010) for the paper entitled “Intelligent Under-
standing of User Input Applied to Arc-Weight Estimation for
Graph-Based Foreground Segmentation.”

• Press Coverage

1) “Quadro a quadro”, by Jornal da Unicamp, Carlos Orsi, June
13–19, 2016.2

2) “Software ajuda a identificar autismo”, by Agência An-
hanguera, Correio Popular, August 11, 2014.3

3) “Software aumenta a precisão na triagem de crianças com
autismo”, by Elton Alisson, Agência FAPESP, 16 July, 2014.4

4) “A medida do autismo”, by Roberta Machado, Correio
Braziliense, Tecnologia, pg. 14, 02 June, 2014.

V. CONCLUSIONS

In this PhD research, we have devised methods for inter-

active image and video segmentation to aid applications for

multimedia data editing. Our techniques focused on mini-

mizing the amount of necessary user intervention to achieve

accurate results in difficult situations. To this end, we have

interpreted images and videos as weighted graphs to use

graph-based image processing operators combined with object

knowledge models. Our techniques have also been applied

to interdisciplinary research with Geology (sandstone grain

segmentation), Psychology/Psychiatry (early Autism assess-

ment), and Medicine (3D medical image segmentation). We

have published a total of 6 journal papers, 7 national and

international conference papers, and two technical reports

during this period. This work has also been awarded two

conference prizes and has drawn significant press coverage.
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