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Abstract—Face identification is an important research topic for
applications such as surveillance, forensics, and human-computer
interaction. In the past few years, a myriad of methods for
face identification has been proposed in the literature, with
just a few among them focusing on scalability. In this work,
we propose a simple but efficient approach for scalable face
identification based on partial least squares (PLS) and random
independent hash functions inspired by locality-sensitive hashing
(LSH), resulting in the PLS for hashing (PLSH) approach.
The original PLSH approach is further extended using feature
selection to reduce the computational cost to evaluate the PLS-
based hash functions, resulting in the state-of-the-art extended
PLSH approach (ePLSH). The proposed approach is evaluated
in the dataset FERET and in the dataset FRGCv1. The results
show significant reduction in the number of subjects evaluated in
the face identification (reduced to 0.3% of the gallery), providing
averaged speedups up to 233 times compared to evaluating all
subjects in the face gallery and 58 times compared to previous
works in the literature.

I. INTRODUCTION

In this work, we focus on the face identification task.
Specifically, the main goal is to provide a face identification
approach scalable to galleries consisting of numerous sub-
jects and on which common face identification approaches
would probably fail on responding in low computational time.
There are several applications for a scalable face identification
method: surveillance scenarios, human-computer interaction
and social media.

The few aforementioned applications show the importance
of performing face identification fastly and, in fact, several
works in the literature have been developed in the past years
motivated by these same types of applications (surveillance,
forensics, human-computer interaction, and social media).
However, most of the works focus on developing fast methods
to evaluate one test face and a single subject enrolled in the
gallery. These methods usually develop low computational cost
feature descriptors for face images that are discriminative and
with low memory footprint enough to process several images
per second. Note that these methods still depend on evaluating
all subjects in the face gallery. Therefore, if the number of
subjects in the gallery increases significantly, these methods
will not be able to respond fastly and new methods shall be
developed to scale the face identification to this larger gallery.

Face identification methods usually consists of a face rep-
resentation or description in the feature vector where mathe-
matical models can be applied to determine the face identity.
In this case, it is used one model to determine each identity
in the face gallery, therefore, being necessary a number of

models equal to the gallery size. Note that the parameters
in each model are learned using samples for each subject
in the face gallery and every model must be evaluated to
correctly identify a test sample. In this work, we propose
a method to reduce the number of models evaluated in the
face identification by eliminating identities that are somewhat
clearly not the identity in the test sample. Figure 1 illustrates
the common face identification pipeline employed in practice
and the main component tackled in this work.

There is an extensive literature of works regarding large-
scale image retrieval that could be employed in face identi-
fication. However, most of these works focus on returning a
list containing images from the dataset that are similar to the
test image. Although reasonable to recover images in large
datasets, such approaches are not suitable to apply directly
to the face identification task. The models from subjects in
the face gallery should optimally be described regarding the
discriminative features related to each subject identity, which
might consume less memory, specially if several samples per
subject are available, and less computational time since only
discriminative features are evaluated to determine the face
identity.

The proposed approach is inspired by the family of meth-
ods regarded as locality-sensitive hashing (LSH), which are
the most popular large-scale image retrieval method in the
literature, and the partial least squares (PLS), which has
been explored intensively in numerous past works regarding
face recognition. We call the proposed approach PLS for
hashing, abbreviated to PLSH and ePLSH in its extension.
The main goal in LSH is to approximate the representation
of samples in the high dimensional space using a small
binary representation where the search can be implemented
efficiently employing a hash structure to approximate near-
identical binary representations. The idea in LSH is to generate
random hash functions to map the feature descriptor in the high
dimensional representation to bits in the binary representation.

In the PLSH approach, the random projection in the afore-
mentioned example is replaced by a PLS regression, which
provides discriminability among subjects in the face gallery
and allow us to employ a combination of different feature
descriptors to generate a robust description of the face image.
PLSH is able to provide significant improvement over the
brute-force approach (evaluating all subjects in the gallery) and
compared to other approaches in the literature. Furthermore,
since the evaluation of hash functions in PLSH requires a dot
product between the feature and regression vectors, additional
speedup can be achieved by employing feature selection
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Fig. 1: Common face identification pipeline and the proposed pipeline with the filtering approach which is used to reduce the
number of evaluations in the classification step with low computational cost. The filtering approach is the main contribution
in this work and it is tailored considering recent advances in large-scale image retrieval and face identification based on PLS.

methods, resulting on the extended version of PLSH (ePLSH).
The following contributions are presented in this work. (i)

A fast approach for face identification that support a com-
bination of several feature descriptors and high dimensional
feature vectors. (ii) The proposed approach presents at least
comparable performance with other methods in the literature
and up to 58 times faster when enough samples per subject are
available for train. (iii) Extensive discussion and experimen-
tation regarding alternative implementations that may guide
future development in scalable face identification methods. (iv)
The proposed approach is easy to implement and to deploy
in practice since only two trade-off parameters need to be
estimated.

This work resulted in the following publications in which
the former presents PLSH and the latter presents ePLSH.

• C. E. Santos Jr, E. Kijak, G. Gravier, and W. R. Schwartz,
“Learning to hash faces using large feature vectors,” in
Content-Based Multimedia Indexing (CBMI), 13th IEEE
International Workshop on, 2015, pp. 1–6

• ——, “Partial least squares for face hashing,” Elsevier
Neurocomputing – Special Issue on Binary Representa-
tion Learning in Computer Vision, pp. 1–44, 2016, (to
appear)

II. METHODOLOGY

This section describes the methods considered in the pro-
posed approach, namely PLS for regression (Section II-A) and
PLS for face identification (Section II-B). The proposed PLSH
is described in Section II-C and in Section II-D, we describe a
PLSH extension (ePLSH), which consists in employing PLS-
based feature selection to improve the performance of PLSH.

A. Partial least squares regression

PLS is a regression method that combines ordinary least
squares applied to a latent subspace of the feature vectors.
Several works have employed PLS for face identification [3],
face verification [4], and open-set face recognition [5]. These
works consider PLS mainly due to the robustness to combine
several feature descriptors, capability to deal with thousands
of dimensions, and robustness to unbalanced classes. In this
work, we consider PLS due to the high accuracy presented

when used to retrieve candidates in PLSH and the low com-
putational cost to test samples since only a single dot product
between the regression coefficients and the feature vector is
necessary to estimate the PLS response.

PLS is calculated as follows. The p-dimensional latent
subspace is estimated by decomposing the zero mean matrices
Xn⇥d, with n feature vectors and d dimensions, and Yn, with
response values, in

Xn⇥d = Tn⇥pP
T
d⇥p + En⇥d,

Yn⇥1 = Un⇥pQp⇥1 + Fn⇥1,
(1)

where Tn⇥p and Un⇥p denote latent variables from feature
vectors and response values, respectively. The matrix Pd⇥p

and the vector Qp represent loadings and the matrix E and
the vector F are residuals from the transformation. PLS
algorithms compute P and Q such that the covariance between
U and T is maximum [6]. We consider the nonlinear iterative
PLS (NIPALS) algorithm [7] which calculates the maximum
covariance between the latent variables T = {t1, ..., tp} and
U = {u1, ..., up} using the matrix Wd⇥p = {w1, ..., wp}, such
that

argmax[cov(ti, ui)]
2
= argmax

|wi|=1
[cov(Xwi, Y )]

2.

The regression vector � between T and U is calculated using
matrix W according to

� = W (PTW )

�1
(TTT )�1TTY. (2)

The PLS regression response ŷ for a probe feature vector x1⇥d

is calculated according to ŷ = ȳ+ �T
(x� x̄), where ȳ and x̄

denote average values of Y and elements of X , respectively.
The PLS model is defined as the variables necessary to
estimate ŷ, which are �, x̄ and ȳ.

B. Face identification based on partial least squares

The proposed approach consists in filtering subjects in the
gallery using methods for large-scale image retrieval. For a
given face identification approach, the evaluation of all sub-
jects in the gallery (without filtering) is regarded as the brute-
force approach, which is undesirable since the asymptotic time
complexity is linear with the number of subjects enrolled in the



gallery. The filtering approach consists in providing a shortlist
to the face identification so that it evaluates only subjects
presented in that shortlist.

The filtering and face identification pipeline consists of
the following steps. Different feature descriptors are extracted
from a probe sample and concatenated in the first step (feature
extraction). Then, the combined feature vector is presented to
the filtering step, which employs large-scale image retrieval
methods to generate a list of candidates sorted in decreasing
order of probability that the candidate is the subject in the
probe. Then, a small number of high probability candidates
in the list is provided to the face identification method, which
evaluates subjects following the order in the candidate list until
the face identification returns a subject in the face gallery. In
this case, speedup is achieved because it is not necessary to
evaluate the remaining subjects in the candidate list once a
gallery match is found, reducing therefore, the computational
cost compared to the brute-force approach.

To evaluate the filtering and face identification pipeline, we
consider the face identification method described by Schwartz
et al. [3], which consists in employing a large feature set
concatenated to generate a high dimensional feature descriptor.
Then, a PLS model is learned for each subject in the gallery
following a one-against-all classification scheme: samples
from the subject are learned with response equal to +1 and
samples from other subjects with response equal to �1. Test
samples are presented to each PLS model and associated to
the identity related to the model that returns the maximum
score. We consider the evaluation of all PLS models as the
brute-force approach and, in the proposed pipeline, only PLS
models that correspond to subjects in the candidate list are
evaluated.

C. Partial least squares for face hashing (PLSH)

The PLSH method is based on two principles: (i) data
dependent hash functions and (ii) hash functions generated
independently among each other. Data dependent hash func-
tions provide better performance in general. Hash functions
generated independently are necessary to induce uniform dis-
tribution of binary codes among subjects in the gallery [8].

PLSH consists of the learn and the test steps. In the learn,
for each hash model, subjects in the face gallery are randomly
divided into two balanced subgroups, positive and negative.
Then, a PLS regression model, regarded as hash function in
this work, is learned to discriminate the subjects in the positive
subset (response +1) from the subjects in the negative subset
(response �1). The association of one subject to one of the
two subsets consists in sampling from a Bernoulli distribution
with parameter p equal to 0.5 and associating that subject
to the positive subset in case of “success”. Note that, the
association to each subset can be viewed as a bit in the
Hamming embedding and the Bernoulli distribution with p
equal to 0.5 is important to distribute the Hamming strings
uniformly among the subjects in the face gallery. A PLSH
hash model is defined as a PLS model and the subjects in the
positive subset necessary to evaluate the test samples.

In the test, the test sample (probe sample) is presented to
each PLSH hash model to obtain a regression value r. We
define a vote-list of size equal to the number of subjects in
the gallery initially with zeros, then, each position of the vote-
list is increased by r according to the indexes of subjects in
the positive subset of the same PLSH hash model. Note that
this scheme allows us to store half of the subject indexes to
increment the vote-list since it will be equivalent to increment
subjects in the negative set by |r| when r is negative (the
differences among pairs of votes will be the same). Finally,
the list of subjects is sorted in decreasing order of values and
presented as candidates for the face identification.

1) Relationship with Hamming embedding: We do not
estimate the Hamming embedding directly since there is no
binary string associated to any face sample. However, PLSH
is equivalent to estimating the Hamming embedding for a test
sample and comparing it with the binary strings generated for
each subject in the gallery. In addition, each bit of the test
binary string is weighted by the absolute value of the PLS
regression response.

To demonstrate the aforementioned claims, consider that
PLS responses can be only +1 or �1, such that any test sample
can be represented by the sequence X = {+1,�1}H , where
H denotes the number of PLSH hash models. Consider also
that each subject s in the face gallery is represented by the
binary string Ys = {1, 0}H , where yi 2 Ys is set to 1 if the
subject s was associated to the positive subset of the i-th PLSH
hash model in the train step, or 0, otherwise. In this context,
the weight ws given by PLSH to each subject in the gallery
is calculated as

ws =

HX

i=1

xiyi.

Note that the maximum ws is equal to the sum of +1 elements
in X , which occurs when yi = 1, if xi = +1, and yi = 0,
otherwise. Similarly, the minimum weight is equal to the sum
of �1 elements in X , which occurs when yi = 1, if xi = �1,
and yi = 0, otherwise. If we transform X onto a binary string
ˆX such that x̂i = 1, if the corresponding xi is +1, and x̂i = 0,

otherwise; we can calculate the Hamming distance between ˆX
and Ys. In fact, the exactly same Hamming distance can be
calculate using ws as

d(X,Y )H = wmax � ws, (3)

where wmax denotes maximum possible ws. The same analogy
can be applied to the weighted Hamming distance if we
consider xi assuming any real number. In this case, the weight
of each bit ↵i is the absolute value of r and the weighted
Hamming distance is equivalent to Equation 3.

D. Feature selection for face hashing (ePLSH)

The algorithms for PLSH described in Section II-C re-
quire a dot product between the PLS regression vector and
the feature descriptor to calculate each hash function. This
section describes methods to reduce the computational cost
to evaluate hash functions. To discriminate PLSH with the



feature selection version and to maintain consistence with the
nomenclature given in our publications, PLSH with feature
selection is called extended PLSH (ePLSH) in the rest of this
work.

In practice, ePLSH is equivalent to PLSH when all features
are considered to evaluate hash functions. The main advan-
tage of ePLSH is the possibility of employing thousands of
additional hash functions, resulting in considerable increase
of the recognition rate while keeping low computational cost
to calculate the hash functions. The common feature setup
considered in the PLSH and in the ePLSH approaches consists
in combining four feature descriptors, which leads to a feature
vector with 120,059 dimensions. However, we show in our
experiments that, for the feature set considered in this work,
about 500 dimensions with an increased number of hash
functions provides better candidate lists than PLSH with about
the same computational cost.

The ePLSH consists of two steps: train and test. In the train,
it calculates the � regression vector following the same proce-
dure of PLSH. Then, the indexes of the k more discriminative
features are stored. Considering that the range of values in
the feature vector is known (zero mean and unit variance in
our experiments), it is possible to calculate an approximated
score using only the more discriminative features. However, if
only such features are used to calculate the regression value
without rebuilding the PLS model, the result would not be
accurate because of the large number of remaining features,
even though they present a very low contribution individually.
To tackle this issue, we learn a new PLS model to replace
the full feature version in PLSH, which is performed by
eliminating the dimensions from the matrix X that do not
correspond to the k select features and recalculate � using
Equation 2.

We define the ePLSH hash model as the PLS model, the
subjects in the positive subset and the k selected features.
Finally, the test step is carried in the same manner as in PLSH,
but with the difference that only features selected in the ePLSH
hash model are considered to calculate the regression score.

E. Early-stop search heuristic

To stop the search for the correct subject in the candidate
list, we employ the heuristic described by Schwartz et al. [3].
For a short number of initial samples (15), all subjects in the
candidate list are evaluated and the median value of the scores
is taken as threshold for the remaining test samples. Then,
subjects in the candidate list are evaluated until a score equal
or higher than the threshold is obtained or the end of the list
is reached.

Note that, in practice, the candidate list size is a percent-
age of the subjects enrolled in the gallery and most of the
candidates with low weights can be discarded because they
rarely corresponds to the probe sample. In this case, the
worst case scenario consists in evaluating all subjects in the
candidate list for every probe sample. However, the early-stop
search heuristic alone is shown to reduce the number of tests
in the face identification up to 63% without degrading the

recognition rate so the speedup achieved is usually higher than
the ratio of the gallery size divided by the number of subjects
in the candidate list.

III. EXPERIMENTAL SETUP

We evaluate PLSH and ePLSH in two standard face identi-
fication datasets, FERET and FRGCv1. The facial recognition
technology (FERET) dataset [9] consists of 1, 196 images,
one per subject for training, and four test sets designed to
evaluate the effects of lightning conditions, facial expression
and aging on face identification methods. The test sets are:
fb, consisting of 1, 195 images taken with different facial
expressions; fc, consisting of 194 images taken in different
lightning conditions; dup1, consisting of 722 images taken
between 1 minute and 1, 031 days after the gallery image;
dup2, is a subset of dup1 and consists of 234 images taken 18

months after the gallery image. In our experiments, all images
were cropped in the face region using annotated coordinates
of the face, scaled to 128⇥ 128 pixels and normalized using
the self-quotient image (SQI) method to remove lightning
effects [10].

The face recognition grand challenge dataset (FRGC) [11]
consists of 275 subjects and samples that include 3D models
of the face and 2D images taken with different illumination
conditions and facial expressions. We follow the same protocol
described by Yuan et al. [12], which considers only 2D images
and consists in randomly selecting different percentages of
samples from each subject to compose the face gallery and
using the remaining samples to test. The process is repeated
five times and the mean and standard deviation of the rank-
1 recognition rate and speedup (considering the brute-force
approach) are reported. The samples were cropped in the facial
region, resulting in size 138⇥160 pixels, and scaled to 128⇥
128 pixels.

All experiments regarding parameter validation were per-
formed on the FERET dataset, since it is the dataset with the
largest number of subjects (1, 196 in total). FERET consists
of four test sets and we use dup2 to validate parameters since
it is considered the hardest of the dataset.

We consider four feature descriptors in this work,
CLBP [13], Gabor filters [14], HOG [15] and SIFT [16],
which mainly captures information about texture and shape
of the face image. This set of features was chosen because
they present slightly better results in the face identification
and indexing compared to the previous works [1], [3].

The error rate of the pipeline as described in Figure 1
results from errors induced by the filter approach (fail to return
identity of test sample in the candidate list) and by the face
identification approach (fail to identify correctly the subject
in the candidate list). Therefore, to assess the performance of
the filter approach alone, we provide results considering the
maximum achievable recognition rate (MARR) [1], which is
calculated considering that a perfect face identification method
is employed for different percentages of candidates visited in
the list. Note that the MARR value is the upper bound for the



recognition rate achieved by the filter and face identification
pipeline.

A. Experimental results

Results regarding MARR and rank-1 recognition rate for
PLSH in all test sets from the FERET dataset are presented
in Figures 2(a) and 2(b). For the test sets fb and fc, about 1%
of subjects in the candidates list is enough to achieve more
than 95% of the rank-1 recognition rate of the brute-force
approach (presented in the legend of Figure 2(b) for each test
set). However, for the test sets dup1 and dup2, about 5% of
subjects in the candidate list ensured at least 95% of the brute-
force rank-1 recognition rate. The theoretical speedup in the
worst case can be calculated considering the 150 PLSH hash
function evaluations and the 5% of the gallery size, which
consists of 60 PLS projections. In this case, the number of PLS
projections would be 210 compared to the 1, 196 projections
necessary in the brute-force approach, which would still results
in a 5.6 times speedup.

Results from ePLSH are presented in Figures 2(c) and 2(d).
Using only 1% of subjects in the candidate list, it is possible to
recover all subjects in the rank-1 recognition rate from brute-
force approach for all four test sets. In this case, the rank-1
recognition rate from the ePLSH pipeline is the same as the
brute-force approach, but with reduction to 1% of the subjects
evaluated in the identification. Considering that the cost to
evaluate all hash models in ePLSH is about the same as in
PLSH, the theoretical speedup is 7.38 times compared to the
brute-force approach in the worst case.

Results from the FRGC dataset for PLSH and ePLSH
are presented in Table I along with results from three other
methods as presented in the literature. The three methods are
the cascade of rejection classifiers (CRC) from [12], the PLS-
based search tree [3], and our previous published work [1],
which consists of PLSH with the combination of HOG, Gabor
filter and LBP feature descriptors. For PLSH and ePLSH, we
vary the number of hash models and the maximum percentage
of subjects visited in the candidate list and we present the
results with rank-1 recognition rate close to 0.95 and higher
speedups. In this way, it is possible to compare directly the
maximum speedup achievable when using PLSH and ePLSH
compared to the other approaches, which also provide rank-1
recognition rate close to 0.95.

According to Table I, the speedup for PLSH and ePLSH
decreases considerable as the number of samples per subject
available for train reduce. The reason for that is the increase
in the number of hash models and the maximum number of
subjects visited in the candidate list to guarantee at least 0.95
rank-1 recognition rate. Even with reduced speedups consid-
ering 35% of samples available for train, ePLSH provides
significant improvement over the speedup achieved by the
tree-based approach (3.6 times faster), while PLSH provides
competitive speedup.

The speedup provided by PLSH and ePLSH compared to
the tree-based approach is noticed with 90% of the samples
available for train, where PLSH is about 5 times faster than

the tree-based approach while ePLSH is about 13 times faster
than PLSH. Finally, in the worse case, ePLSH provides at
least 14 times speedup considering the brute-force approach
in the setup with 200 hash models and 10% of subjects in the
candidate list.

IV. CONCLUSIONS

In this work, we proposed and evaluated PLSH and its
extension ePLSH for face indexing. PLSH is inspired by the
well-known locality-sensitive hashing for large-scale image re-
trieval and PLS for face identification, which provides fast and
robust results for face indexing. Additional gain in speedup
was achieved with the ePLSH, a method that employs PLS-
based feature selection to reduce the computational cost to
evaluate hash functions, enabling a large amount of additional
hash functions to be employed and raising the indexing
precision. We evaluated several parameters and alternative
implementations of PLSH in the hope that they will be useful
for future face indexing development. The experiments were
conducted on two face identification standard datasets, FERET
and FRGCv1, with 1, 196 and 275 subjects, respectively.
Although these datasets do not provide enough number of
subjects for a proper evaluation regarding scalability to large
galleries, PLSH and ePLSH still provide significant improve-
ment in speedup compared to other scalable face identification
approaches in the literature.

The conclusions and considerations regarding PLSH and
ePLSH are the following: (i) they support for high dimensional
feature vectors, allowing different complementary feature de-
scriptors to be employed to increase the robustness of the face
indexing; (ii) they are easy to implement and deploy in practice
since the only parameters needed to be set are the number of
hash models and subjects in the candidate list. (iii) they do not
provide good performances when the number of samples per
subject is reduced and (iv) incremental enrollment of subjects
in the framework requires re-training of the hash models,
which may be prohibitive to perform in practice, specially for
ePLSH which demands considerable more hash models.
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