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Abstract—Remote Sensing Images (RSIs) have been used as a
major source of data, particularly with respect to the creation of
thematic maps. This process is usually modeled as a supervised
classification problem where the system needs to learn the
patterns of interest provided by the user and assign a class
to the rest of the image regions. Associated with the nature
of RSIs, there are several challenges that can be highlighted:
(1) they are georeferenced images, i.e., a geographic coordinate
is associated with each pixel; (2) the data commonly captures
specific frequencies across the electromagnetic spectrum instead
of the visible spectrum, which requires the development of specific
algorithms to describe patterns; (3) the detail level of each
data may vary, resulting in images with different spatial and
pixel resolution, but covering the same area; (4) due to the
high pixel resolution images, efficient processing algorithms are
desirable. Thus, it is very common to have images obtained from
different sensors, which could improve the quality of thematic
maps generated. However, this requires the creation of techniques
to properly encode and combine the different properties of
the images. Therefore, this M.Sc. dissertation1 proposes two
techniques for classification of regions in RSIs that manages to
encode features extracted from different sources of data, spectral
and spatial domains. The major objective is the development of
approches able to exploit the diversity of these different types
of features to improve the accuracy in the creation of thematic
maps.

Keywords-Multimodal Classification; Remote Sensing; Data
Fusion.

I. INTRODUCTION

Over the years, there has been a growing demand for
remotely-sensed data. Specific objects of interest are being
monitored with earth observation data, for the most varied
applications. Some examples include ecological science [1],
hydrological science [2], agriculture [3], and many other
applications.

RSIs have been used as a major source of data, particularly
with respect to the creation of thematic maps. A thematic map
is a type of map that displays the spatial distribution of an
attribute that relates to a particular theme connected with a
specific geographic area. This process is usually modeled as
a supervised classification problem where the system needs to
learn the patterns of interest provided by the user and assign
a class to the rest of the image regions.

1This work relates to a M.Sc. dissertation.

In the last few decades, the technological evolution of
sensors has provided remote sensing analysis with multiple
and heterogeneous image sources, which can be available
for the same geographical region: high spatial, multispectral,
hyperspectral, radar, multi-temporal, and multiangular images
can today be acquired over a given scene.

Typically, these sensors are designed to be specialists in
obtaining one or few properties from the earth surface. This
occurs because each sensor, due to technical and cost lim-
itations, has a specific observation purpose and operates at
different wavelength ranges to achieve it. Since the sensors are
specialists, they carry different and complementary informa-
tion, which can be combined to improve classification of the
materials on the surface and consequently increase the quality
of the thematic map. In this scenario, it is essential to use a
more suitable technique to combine the different features in
an effective way.

The remote sensing community has been very active in
the last decade in proposing methods that combine different
modalities [4]. In addition to support the research on this
important topic, every year since 2006, the IEEE Geoscience
Remote Sensing Society (GRSS) has been developing a Data
Fusion Contest (DFC), organized by the Image Analysis and
Data Fusion Technical Committee (IADFTC), which aims at
promoting progress on fusion and analysis methodologies for
multisource remote sensing data. Also, other data fusion chal-
lenges have been proposed more recently by the International
Society for Photogrammetry and Remote Sensing (ISPRS),
devoted to the development of international cooperation for the
advancement of photogrammetry and remote sensing and their
applications. All the effort to reach advance in this research
area shows the high interest and timely relevance of the posed
problems.

Multimodal classification is a challenging task for several
reasons. First, the data are generated by very complex systems,
driven by numerous underlying processes that depend on the
sensor used and a large number of variables which sometimes
we have no access, e.g., the atmospheric constituents cause
wavelength-dependent absorption and scattering of radiation,
which degrade the quality of images. Second, combining
heterogeneous datasets such that the respective advantages of
each dataset are maximally exploited, and drawbacks sup-
pressed, is not an evident task. Third, as pointed by [5], it



is very difficult to conclude what is the best approach for
multimodal data fusion, since it depends on the foundation of
the problem, the nature of the data used and the source of
information utilized.

There are also several research challenges in computational
scope when working with RSI classification such as: (1)
remote sensing data is inherently big, even at 250 m coarse
spatial resolution, Moderate-Resolution Imaging Spectrora-
diometer (MODIS) product can contain more than 20 millions
of pixels, jointly with a time series of five thousand observa-
tions. Most machine learning models described as a state of
the art (e.g., Deep Neural Networks, non-linear Support Vector
Machines), can not handle with the magnitude of this data;
(2) segmentation scale, accompanied by the large amount of
information at the level of object in very high spatial resolution
images, segmentation algorithms have difficulty in defining the
optimum scale to be used; (3) pixel mixture and dimensionality
reduction, images with high spectral resolution must be prepro-
cessed due to problems such as high dimensionality, treatment
of noise and corrupted bands, mixture of pixels due to the low
spatial resolution; (4) efficiency, even collecting information
from various sensors, efficiency and capability to process that
amount of data is desired or even crucial depending on the
application. In applications such as tsunami or earthquakes,
the data must be analyzed in near real time, and the difference
of a few seconds can save hundreds or even thousands of lives
in a seaquake.

In this work, we are interested in the use of RSI par-
ticularly with respect to the creation of thematic maps by
exploiting multi sensor data. To this purpose, we proposed
two different approaches to the classification task, designed
to receive two images, over the same geographic region, with
different domains as input: an image with very high spatial
(V HS) resolution and another one with multi/hyperspectral
(HS) resolution (Figure 1).

Hiperspectral

Very High Spatial

Fig. 1. An illustration of multimodal data acquisition. The figure shows two
different platforms: a plane and a satellite; carrying sensors which extract
different information (spectral and spatial) over the same region, creating a
multimodal perspective.

The first approach is called Dynamic Majority Vote. In

this approach, we create a framework based on a supervised
learning scheme, divided in six steps: (1) data acquisition,
the framework receives the VHS and HS images, acquired
by different sensors but over the same geographic area as
input; (2) object representation, the VHS image is segmented
in regions using a segmentation algorithm while the HS image
is analyzed by the spectral signature of each pixel; (3) feature
extraction, feature vectors are extracted from the segmented
regions of VHS using various descriptors and the spectral
signatures are obtained by different dimensionality reduction
methods; (4) training, using different learning methods and
the feature vectors extracted from both domains a set of base
classifiers is created; (5) dynamic weight matrix construction,
using the trained base classifiers and a validation set is
create a matrix of weights which represents the importance
of each classifier at decision in every class; (6) prediction,
given unseen samples and built the dynamic weight matrix, a
predict for every new sample is made using the weights of the
decisions of every classifier at that sample. Our approach has
the ability to exploit these classifiers which have a specialty in
some specifics classes, but would be suppressed by the other
classifiers in an equal weight scheme.

The second approach is a boosting-based approach based
on the SAMME Adaboost [6]. Such as the Dynamic Majority
Vote, the boosting-based approach uses a supervised learning
framework, but may be divided in five steps: (1-3) data
acquisition, object representation and feature extraction as
described in the previous description; (4) training, using the
features extracted from both domains and diverse learning
methods a set of weak learners is created, which at every
boosting iteration once is selected to compose the final strong
classifier; (5) prediction, given the unseen samples and the set
of selected weak learners, a predict for every new sample is
made regarding to the linear combination of the weak learner
predictions. In this approach, we exploit the inherent feature
selection of the Adaboost for the combination of different
modalities, as a natural process.

To summarize, this work has the following two main con-
tributions:

• A late fusion technique, called Dynamic Majority Vote,
which exploits the specialty of different classifiers and
combines them for a final decision for each pixel in the
thematic map;

• A boosting-based approach, capable of combining differ-
ent modalities of sensor data by using the inherent feature
selection of the boosting-based strategy.

II. RELATED WORK

In data fusion, each data source describing the same scene
and objects of interest can be defined as a modality. In remote
sensing image analysis, the different modalities often represent
a particular data property carrying complementary information
about the surface observed [7].

The joint complementarity exploitation of different remote
sensing sources has proven to be very useful in many ap-
plications of land-cover classification, and the capability of



improving the discrimination between the classes is a key
aspect towards a detailed characterization of the earth [5].
Concerning multisource data, a diversity of fusion techniques
has been proposed in the remote sensing literature, which can
be divided into levels according to the modalities used in the
fusion, as follows:

1) Fusion at subpixel level: Given k modalities datasets,
which usually involve different spatial scales, the modal-
ities are fused at subpixel level using appropriate trans-
forms [8]. These fusions are commonly used in the cases
where the main objective is to preserve the valuable
spectral information from multispectral or hyperspectral
sensors, with low spatial resolution, as an alternative to
pan-sharpening methods which can produce a spectral
distortion [9].
In the subject of proposed works based on spectral un-
mixing for data fusion, the spatial and temporal adaptive
reflectance fusion model proposed in [10], was used
in [11] for combining information from Landsat (30-
m resolution) and MODIS (250-m to 1-km resolution),
and a set of methods for increasing spatial resolution
associated to [12] was used for classification task [13],
[14]. An overview of the majority of nonlinear unmixing
methods used in hyperspectral image processing and
many recent developments in remote sensing are pre-
sented with details in [[15], [16]].

2) Fusion at pixel level: Given k modalities datasets, in
the fusion at pixel level exists a direct pixel correlation
between the modalities, which is used to produce data
fusion. In general, that fusion level attempts to combine
data from different sources in intent to produce a new
modality, which, afterward, could be used for different
applications. Some examples that rely on that case is
pan-sharpening, super resolution, and 3D reconstruction
from 2D views [5]. An evaluation of spatial and spec-
tral effectiveness of more common pixel-level fusion
methods was realized in [17]. Regarding [17], several
pan sharpening methods have been proposed in the
literature [[18], [19], [20]], primarily based on algebraic
operations, component substitution, high-pass filtering
and multi resolution analysis.
More recently, [21] made an analysis of the different
fusion techniques in images, also applied to remote
sensing at a pixel level, showing that all techniques have
their own limitation when used individually and they
also encouraged the utilization of hybrid systems.

3) Fusion at feature level: Given k modalities datasets,
various features are extracted individually from each
modality, e.g., edges, corners, lines, texture parameters,
followed by a fusion, which involves extraction and
selection of more discriminant attributes. Regarding [4],
one of the new research directions on feature level mul-
timodal fusion are the Kernel methods. At the domain
of remote sensing, there is a considerable number of
studies about kernel methods [22], once they provide an

instinctive way to encode data from different modalities
into classification and prediction models. One of the
first attempts to combine data from different modalities,
using a combination of kernel functions, was realized
by [23], who created a compound kernel by using the
weighted summation of spatial and spectral features
from the co-registered region. Extending the proposition
for more than two sources, a multiple kernel learning
[24] was applied to [25] for combining spatial and
spectral information, to combine optical and radar data
[26], [27], using the same sensor but in different places
[28], also using different optical sensors to change
detection [29].

4) Fusion at decision level: Given k modalities datasets,
an individual process path is made for each modality,
followed by a fusion of the outputs, assuming that the k
outputs combined can improve the final accuracy [30].
In this way, the combination of complementary infor-
mation from different modalities is done through the
fusion of the results obtained considering each modality
independently. There are several ways to combine the
decisions, such as including voting methods, statistical
methods, fuzzy logic-based methods, etc. When the
results are explained as confidences instead of decisions,
the methods are called soft fusion; otherwise, they are
called hard fusion. An example of this type of fusion
was presented in the 2008 [31] and 2009-10 [32] data
fusion contests. [33] used a scheme of weighted decision
fusion, which uses the SVM and the Random Forest for
the probability estimation in the Landsat 8 and MODIS
sensors; [34] made a combination of fusion by feature
level using a graph-based feature fusion method together
with a weight majority voting of outputs from differents
SVM’s for the classification of hyperspectral and Light
Detection and Ranging (LiDAR) data.

The above-described levels do not cover all the possible
fusion methods since input and output of data fusion can
be different for each level of processing. In the most cases,
the fusion procedure is a junction of the four fusion levels
considered previously.

The following two sections detail both contributions ob-
tained.

III. DYNAMIC MAJORITY VOTE

We create a framework based on a supervised learning
scheme, dealing with different scenarios, regions and objects,
on the creation of thematic maps for the classification task.
For that, we propose a new approach, at decision level, to
handle an amount of decisions from different classifiers, and
combine them to obtain a final decision for each pixel in the
thematic map. Contrary to approaches from the literature, our
method uses the kappa index [35] to compare two classifiers.
This fact brings some advantages since kappa index is more
robust in dealing with unbalanced training sets.

The method is projected to receive two images from the
same place with different domains as input: an image with



very high spatial (V HS) resolution and another one with
hyperspectral (HS) resolution. Our method is developed for a
multiclass mapping scenario. It exploits the expertise of each
learning approach over each class in order to find the most
specialized classifiers. The result of this process is a dynamic
weight matrix.

Most voting methods use an unique weight assigned to
each classifier, regardless of the class to be predicted. This
approach does not exploit the specialty of each classifier in
a particular class, and thus can weaken the final model with
no reliable predictions. Another weakness of the traditional
majority voting is the difficulty of dealing with classifiers that
produce similar mistakes in their predictions, thus resulting in
the prediction of incorrect class.

The proposed approach uses a method for assigning weights
where each classifier has a degree of reliability for each class
to be predicted, resulting in dynamic weights. In addition, the
method was created to handle classifiers that produce similar
mistakes in their predictions. For this, an update of weights
is accomplished favoring models whose distribution errors
is uniform, thus hindering the allocation of high weight for
classifiers not experts in difficult samples.

Our approach is divided into five main steps: object repre-
sentation, feature extraction, training, dynamic weight matrix
construction, and predicting. Figure 2 illustrates the proposed
framework.

The contribution published in [36], evaluate the Dynamic
Majority Vote in an urban scenario conducting a series of
experiments in the IEEE GRSS Data Fusion Contest 2014
dataset, that demonstrated a significant improvement using
the Kappa index and Overall Accuracy metrics in comparison
with the proposed baselines. Our approach extracted features
from different domains, which were trained with different
learning techniques. This process created a set of classifiers
with different expertise. The method assigned a weigh for each
classifier according to their expertise in each specific class. The
creation of the final thematic maps consisted in classifying
each non-labeled region by fusioning the predicted output
of each classifier according to their weights. This method
was created by observing the latest approaches in multimodal
classification in literature. The mostly uses the majority voting
system as late fusion technique not exploiting the specialty of
the classifiers in particular classes. So exploring the weakness
of the traditional majority vote to deal with classifiers that
produce similar mistakes in their predictions, we create a
technique which prevent the allocation of high weight for
classifiers not experts in difficult samples.

A more detailed discussion about the evaluation of method
and the results can be found at [36].

IV. BOOSTING-BASED APPROACH

In this method, we aim at exploiting multi-sensor data in
a more general way, using the idea of boosting of classifiers,
based on the SAMME Adaboost method [6].

The choice of an approach based on boosting is related to
the inherent advantages of the strategy and its application in a
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Fig. 2. The Proposed Dynamic Weight Matrix (DWM)-based framework.
Given the amount of feature extracted from both domains, a set of classifiers is
create in (1). Afterwards, the classifiers are used in a validation data, producing
a collection of confusion matrices, one for each classifier. Since built the
collection of confusion matrices, an analyze of the distribution errors is made
in (2) and the dynamic weight for every classifier in each class is produced. At
the end, built the dynamic weight matrix and given the output of the classifiers
in an unseen sample, the reliability of each prediction is consulted and the
class with the highest final weight is chosen.

multimodal classification of RSIs. Regarding the advantages,
we can highlight: (1) algorithm flexibility, being possible to
combine any method of learning as well extracted features
obtained from different domains; (2) efficiency, when dealing
with RSIs, the use of robust and efficient methods is desired,
due to the complexity of the data (e.g., images with hundreds
of spectral bands, very high pixel and spatial resolutions)
and the high computational cost for processing; (3) tuning
parameters, unlike most of the robust methods in the literature
(e.g., SVMs, Neural Networks) that use non-linear models thus
requiring various parameter settings, the boosting approach
uses a combination of weak linear models to create a more
complex function, and requires only a single parameter, the
number of rounds to be trained; (4) well-known algorithm,
in addition to the solid mathematical foundation behind the
method, the literature also indicates successful works using
boosting in remote sensing [37] and for other applications to



computer vision [38].
We create a framework based on a supervised learning

scheme, dealing with different scenarios, regions, and objects,
on the creation of thematic maps for the classification task.
We propose a scheme, with a combination of a pixel, feature,
and decision levels, to handle an amount of information from
different modalities, and combine them for a final decision for
each pixel in the thematic map. Contrary to approaches from
the literature, our method uses the inherent feature selection
of the boosting for the combination of different modalities, as
a natural process.

The proposed method is projected to receive two images
from the same place with different domains as input: an
image with very high spatial resolution and another one with
hyperspectral resolution.

The boosting approach is divided into five main steps:
data input, object representation, feature extraction, training,
predicting. Figure 3 illustrates the proposed framework.

In the contribution published in [39], we evaluate the
Boosting-based approach in an urban scenario and coffee
crop recognition conducting a series of experiments in two
datasets referred in urban multi-class scenario, and coffee
crop recognition. The experiments demonstrated a significant
improvement using the Kappa index and Overall Accuracy
metrics in comparison with the proposed baselines at the urban
scenario, but not statistically relevant in concern to the coffee
crop recognition dataset using the Overall Accuracy. In that
case, the main problem was the great difference between the
pixel resolution of the images and a poor spectral information
from a multi-spectral image, making unfeasible the extraction
and combination of spectral information effectively.

Please refer to [39] for a more detailed discussion.

V. CONCLUSION

In this M.Sc. dissertation were addressed the use of RSI
particularly with respect to the creation of thematic maps ex-
ploiting multi-sensor data. We dealt with two main challenges:
the combination of referenced images from different domains
(spatial and spectral) and how to exploit different types of
features, extracted from these sensors.

To this purpose, we proposed two different approaches
to the classification task, projected to receive two images,
over the same geographic region: Dynamic Majority Vote and
Boosting-based approach.

The joint complementarity exploitation of different remote
sensing sources has proven to be very fruitful in the urban
scenario dataset proposed, however the efforts to combine the
information from a multispectral data with great difference
of spatial resolutions and a poor spectral resolution prevent
the Boosting-based approach to utilize the spectral features as
additional information for the strong model.

This M.Sc. dissertation work was completed in two years
(from March 2014 to March 2016) and has resulted in two
conference papers [36] and [39].

As future work, we plan to evaluate the Boosting-based
approach using other remote sensing datasets which contain
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Fig. 3. The Proposed Boosting-based approach framework. (1) The proposed
method is projected to receive two images from the same place with different
domains as input: an image with very high spatial resolution and another one
with hyperspectral resolution; (2) the VHS image is segmented into regions
using a segmentation algorithm while the HS image is analyzed by the spectral
signature of each pixel; (3) feature vectors are extracted from the segmented
regions of VHS using various descriptors and the spectral signatures are
projected by using different dimensionality reduction methods; Given the
amount of feature extracted from both domains, the boosting training starts
in (4), where for every round one weak classifier will be chosen to compose
the final strong classifier. The samples which are incorrectly labeled in every
round, have their weight increased and will be focused by the learners in the
next round. The collection of selected weak classifiers are combined in (5) to
build the strong final classifier, which is used to predict the samples of the
test data regarding the confidence of each weak model.

spatial and hyperspectral information, and covering a higher
spatial area. As another future work, we intend to adapt the
framework to handle with different sensors, e.g., LIDAR,
which contain elevation information from the objects.
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