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Fig. 1. Interactive lighting and shading of 2.5D models: On the left, three 2D drawings of a model and (a) the resulting 2.5D model with solid fill
colors; On the right the shaded 2.5D model with (b) Phong shading (c) Gooch shading and screen-space texture hatching (d) Object-space texture
hatching and cartoon shading (e) Phong shading and fur simulation (f) environment mapping and Phong shading hatching.

Abstract—Recent Advances in Computer assisted-methods for
designing and animating 2D drawings allowed artists to achieve
distinctive design styles while increasing the artist’s flexibility. A
advance that has gained particular attention is the 2.5D modeling,
which simulates 3D transformations from a set of 2D vector arts.
However, previous 2.5D modeling techniques do not allow the use
of interactive lighting and shading effects. In this work we present
a technique to achieve interactive 3D shading effects to 2.5D
modeling1. Our technique relies on the graphics pipeline to infer
relief and to simulate shading effects in 2.5D models in real-time.
We demonstrate the application of the technique with several
shading and texture effects, including: Phong, Cartoon and
Gooch shadings, as well as environment mapping, fur simulation,
procedural animated texture mapping and (object-space and
screen-space) texture hatching. Additionally, we produced a
interactive 2.5D modeling tool, wish enable users to effortless
create and edit shading effects in 2.5D models.
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I. INTRODUCTION

The improvement of techniques and tools that assist artists
in creating content benefit the development in all areas of vi-
sual arts. Specially, 2D animation artists have used computer-
assisted tools and techniques to automate or facilitate the cre-
ation process. Strategies which generate intermediate frames
between two key-frames (inbetweening techniques) [1]–[4]
and simulated 3D effects in 2D drawing [5]–[8] have received
much attention. In particular, 2.5D modeling techniques [4],

1This work is based on a M.Sc. dissertation entitled ”Preenchimento
e Iluminação Interativa de Modelos 2.5D”, of the Graduate Program of
Computer Science of the Federal University of ABC, Brazil.

[9] that simulate 3D transforms from a set of 2D vector
art drawings. These methods generate plausible 3D points
of view in any 3D angle. Three drawings are sufficient for
a satisfactory simulated rotation around the 3D space [4],
[9]. However, 2.5D modeling techniques include a series of
limitations, in special, the inability to implement lighting and
shading effects on the 2.5D model.

2D vector art drawing tools employ a wide range of shading
techniques such as light mapping, gradient-based region fill-
ing, texturing and shadows. Previous to this work, interactive
2.5D modeling techniques only support 2D shapes filled with
solid colors, limiting the perception of shading and lighting,
as well, the ability to assign materials to the shape’s surface.

Contributions: The technique presented in this work
allows the user to interactively create 2.5D models with
different types of materials, lighting and shading effects. We
demonstrate the technique for a variety of shading effects,
originally designed for real-time 3D rendering, including ef-
fects such as Cartoon Shading, Phong Shading, Environment
Mapping, texture based Hatching and fur simulation. These
effects depend on the geometric properties of 3D models such
as surface normals and surface parametrization which are not
present in the previous 2.5 Modeling approaches. An example
of the effect achieved by our approach is shown in Figure 1
(b-f).

The technique is composed of two steps: The first step
correspond to the 2.5D modeling simulation. This step is
performed exclusively on the CPU. The second step generates
the 2.5D shading simulation. This process is executed on the
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GPU where we estimate the 3D properties in the interior
of 2D shapes. The use of programmable graphics hardware
for the simulation of these geometrical properties allows the
implementation and effects editing in interaction time. As a
byproduct of our approach, we present an interactive 2.5D
modeling tool capable of simulating different 3D shading
effects in real-time (Sec. 5).

This work was presented and published as full paper at
the 2015 Graphics Interface conference named: Interactive
Shading of 2.5D Models [10]. Some figures presented here
were originally in this conference work.

A. Related work

In recent years, many approaches have been proposed to
improve the visual appearance of 2D drawings. Di Fiore et
al. [4] proposed an approach that aims to simulate 3D rota-
tions from 2D drawings. The technique computes intermediate
frames (inbetweening) of 2D drawings using 2.5D modeling.
The artist provides a set of 2D drawings, which represents the
object at different points-of-view, and defines a depth value
for each curve of each 2D drawing. The technique is capable
of generate new points-of-view for any 3D rotation. This is
archived through the interpolation and deep ordering of the
input curves. Similarly, Rivers et al. [9] presented the 2.5D
Cartoon Model, a technique to simulate 3D rotations from 2D
drawings. However, unlike previous work, the 2.5D Cartoon
Model employs a automatic depth ordering of the curves. An
et al. [11] proposed a technique to automatically convert 3D
objects in 2.5D Cartoon Models. The method generates 2.5D
curves and deep ordering based on the segmentation of 3D
meshs.

Di Fiore and Van Reeth [12] proposed an approach to assist
artists in the creation of different 2D points-of-view. The
method generates 3D polygons approaching (user-input) 2D
drawings. These 3D polygons serve as visual guides that help
the artist to maintain the proportions and volumes consistent
across multiple points-of-view.

Yeh et al. presented double-sided 2.5D graphics [13]. The
system receives as input two images representing front and
back sides of a 2D shape and then simulates geometrical
effects such as roll, twist and bend. Opposing to previous 2.5D
techniques, double-sided 2.5D graphics does not simulate rigid
3D rotations.

Sykora et al. [5] presented a technique to embed depth
information into 2D drawings. The method is based on a
set of depth (in)equalities that avoid the need of absolute
depth values. This approach is formulated by the authors as
an optimization problem that can be solved by quadratic pro-
gramming algorithms. Considering that solution excessively
time-consuming, they proposed an approximate solution which
depends on solve a Laplace equation.

In recent years, several techniques to simulate relief from
2D drawing were presented. Some techniques rely on recon-
structing the 3D geometry of objects using meshs [14]–[17],
point-sets [18], or curves [19]. Other approaches tackle the is-
sue simulating relief effects from estimated 3D normals inside

a 2D curves [20]–[24]. Our approach belongs to this strategy,
considering that this strategy is computationally suitable for
interactive applications.

Lumo [20] is a vector-based method to shading 2D draw-
ings. It assumes that each drawing shape belongs to the
silhouette of a 3D object, implying that the normals on the
curve are located in the screen plane. Lumo fills the region
in the interior of the curve by propagating the normals of the
curve to a 3D normal field. The propagation is achieved by
an iterative dampened-spring diffuser method. Bezerra et al.
[25] employs a similar strategy to shading 2D raster-based
drawings.

Nascimento et al. [22] proposed an explicit method to cal-
culate the 3D normal field in the interior of curves. Similarly,
Knechtel [26] presents a structure (ancestry tree) that allows
the creation, reconstruction and editing of normal maps on 2D
drawings at interactive rates.

The method of Sykora et al. [5], which propagates smoothed
depth information inside the drawings curves, can be used
to interpolate normals and generate a 3D normal field. This
technique was used in later works of the authors [7], [8].
Although these methods produces plausible results it can’t
be considered interactive, since it takes several seconds to
generate a single frame [8].Moreover, these techniques are
applied to 2D drawings and do not consider the simulation
of 3D transformations.

In the next sections, we present the technical details of
the interactive lighting and shading 2.5D method as well
as the characteristics that we adopt in our implementation.
Specifically, in Section II, we exhibit an overview of the 2.5D
modeling technique. A detailed description of the technique
is available at Gois et. al [10]. In Section III, we present the
technique to lighting and shading 2.5D models. The technique
is performed on CPU and GPU, each step is depict through its
own subsection. In Section IV, we report our results, includ-
ing an interactive 2.5D modeling tool (Section IV-A) and a
brief discussion about performance of the application (Section
IV-B). Conclusions, including suggestion of an application and
future works for 2.5D Models are described in Section V.

II. 2.5D MODELLING

The 2.5D Model uses a set of 2D drawings provided by
the artist to create a model where you can simulate 3D
transformations. The essential steps of the method consist of
plausible interpolate shapes of 2D drawings considering their
space orientation and automatic determine the depth order
relation of curves that constitute the 2.5D Model.

In our approach, the user defines a set of 2D point-of-
views (e.g. front, side, top) of the same object. The drawing
in each point-of-view is composed of a set of filled shapes.
A (pitch;yaw) parameter is assigned to each 2D point-of-view.
These parameters represent the position of a point-of-view in
the spatial orientation. The parameters have a value defined
as: −π2 ≤ pitch ≤

π
2 and −π ≤ pitch < π.

We assume that the 2D drawings for the parameters
(pitch;yaw) = (0;0) (front view) and (pitch;yaw) = (0;π)



(back view) correspond to orthographic projections onto the
xy-plane. We also defined a z component that can be used
to determine the depth order of the drawing shape. The z
component could be the z value of any non-front and non-
back drawings. We take the average of the z values over all
views that contain this depth information, e.g., all drawings
except the front and back one [10].

Rivers et al. [9] proposed an approach to interpolate among
a set of 2D drawings. In that approach, the pitch-yaw orien-
tation space is mapped to a 2D plane. Each 2D user input
drawing is associated with a 2D position on the plane. A
Delaunay triangulation is then computed considering the 2D
positions of the drawings on the plane as vertices of the
triangulation. New drawings are determined by barycentric
interpolation inside the Delaunay triangulation. We use this
method in our approach.

III. LIGHTING AND SHADING

In this section we present the technique to lighting and
shading 2.5D models. The main goal of the method is to
interactively simulate 3D shading effects in the interior of the
shapes of the 2.5D model. These effects depend on 3D geo-
metric properties, such as surface normals and parametrization
of the surface. These properties are estimated in real time
whenever a new frame is generated. Figure 2 presents an
overview of the method. Bold arrows indicates processing flow
and dashed arrows show data communication. The method
consists of two main processing stages: the first stage is
executed on CPU and the second on GPU. The CPU is
responsible for the 2.5d Modeling and calculating the Contour
Normals along the curve. The Contour Normals are used as
for the simulation of 3D relief inside the curves. Whenever
a curve is edited or created, the normals are recalculated and
sent to the GPU, where the 3D relief is simulated.

A. Contour Normals

We assume that the contour of any 2D shape of a 2.5D
model corresponds to the silhouette of a smooth surface
(Figure 3(a)). Hence, the curve normals have components
(x, y, 0), where (x, y) are the normals along the contours of
the 2D shape [20] [22] [10].

The Contour Normals are computed in the vertices of
polylines that aproximate the contour curve(Figure 3(B)). The
contour normals are computed in the CPU and stored in a
Texture Buffer Object (TBO) on the GPU. Later the contour
normals are propagated to the interior of the shape as a 3D
normal field. This process is shown at Figure 2.

B. Dynamic Grid

Propagation of the contour normals to the interior of a
shape is a task that requires intense computing power. To
work around this problem, we create a dynamic grid that
fits the dimensions of the bounding rectangle of the shape
(Figure 3 (c)). Then we calculate normals at the vertices of
the dynamic grid (Figure 3 (d)). As soon as the normals are

Fig. 2. Overview of the data and control flow for shading 2.5D models. The
execution flows from CPU to GPU. Extracted from [10].
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Fig. 3. The pipeline for computing normals inside a shape of a 2D curve:
(a) shape interpolated by the 2.5d modeling; (b) 2D normals computed along
the contour of the shape; (c) Tesselation of the bounding rectangle of the
shape; (d) 3D normals estimated in the vertices of the tesselated bounding
rectangle; (e) normal field interpolated for each fragment, encoded in RGB
color. Extracted from [10].



calculated, they are interpolated for each fragment using the
linear interpolation present in the GPU pipeline (Figure 3(e).

To create the dynamic grid in real time, we used the
Tessellation Control and Tesselation evaluation shader stage
included in the rendering pipeline (Figure 2). Initially the grid
is composed of a single quad that is stored in a buffer object
into the GPU. For each curve, this quad is appropriately scaled
to fit the bounding rectangle of the curve. The levels of inner
and outer tessellation are adjusted to subdivide this quad in
proportion to changes in vertical and horizontal scale of the
bounding rectangle. For a bounding box with different aspect
ratio, the tessellation level is adjusted according to the size of
most lengthy dimension.

C. Normal Field

An explicit formulation for propagating the normals was
proposed by Nascimento et al. [22]. We used an approximation
of this approach due to the fact that it can be incorporated
easily into the parallel architecture of the GPU. In particular,
the normal of each vertex of the dynamic grid (Section III-B)
can be calculated independently in a single step in the vertex
shader of the GPU. Every normal n at a vertex position p of
the dynamic grid is estimated taking into account all normals
µ(i = 1, ..., N) along the curve. The x and y components of
the normal n is given by:

n{x,y} =

N∑
i=1

µi{x,y}

‖p− pi‖2

ω
(1)

where

ω =

N∑
i=1

1

‖p− pi‖2
. (2)

The normalization of the normal vector in p is ensured by
imposing

nz =
√

1− n2x − n2y. (3)

We estimated a 3D normal for each vertex of the dynamic grid.
The 3D normals are interpolated by the GPU raster to produce
a smooth 3D Normal field. Figure 3 (e) shows the resulting
interpolated normals encoded as a RGB color image.

We defined creases and ridges that can change the way light
reacts to a surface. These creases affect the shading of the
shape. The creases are produced from user-made markings
in the interior of a 2.5D shape. These markings are cubic
splines that represent shading restriction. The orientation of the
normals along these markings determine whether they address
a crease or a ridge on the surface of the 2.5D Model. The
shading constraint are incorporated with the regular contour
normals of the shape. [10]

D. Shading

Instead of calculating the lighting equations directly to each
pixel within the 2D curve, we first generate an illuminated ref-
erence model having the same lighting characteristics desired
in the final surface. Specifically, in this work the reference

model is the rendering of a shaded sphere generated in a
particular point-of-view and stored in a frame buffer object
(FBO) (Figure 2). This FBO is used as a texture look-up table
that is indexed by the components (x, y) of the normal vector.
The choice of using an proxy model for lighting is a well
known approach in the literature [20].This method accelerates
the processing time of the lighting and texture mapping , since
the performance of the illumination process does not depend
on the complexity of the shapes.

It is important to mention that, unlike Lumo [20] which uses
a static texture of the shaded sphere, in this work it is necessary
to perform the rendering of this reference model whenever a
change in shading or lighting occur. This is essential due to
the 3D rotations in 2.5D model technique which can change
the relative position between the light sources and the viewer.

E. Contour Clipping

Our approach not only consider the shading of the interior
of a shape. But the entire area inside the bounding rectangle
of the shape is shaded. Thus it it is important to discard
the exterior of shape. For this we apply a per-pixel contour
clipping operation in screen space.

Instead of performing a clipping operation on the contour
of each shape, an alternative approach could be adopted. This
approach would involve the creation of a mesh constrained
by the interior of the shape. This approach would avoid
shading of the exterior and clipping of the shape. However,
this would require a high computational effort to update the
VBO (vertex buffer object) wherever the shape changed. Our
method requires only a single static quad as input and perform
a clipping in a per-pixel accuracy.

IV. RESULTS AND DISCUSSION

As a result of this work, we implemented a multi-platform
application which includes a 2.5D modeling tool with interac-
tive lighting and shading abilities. For this implementation we
use the QT Framework version 5.3.2 [27]. All shaders have
been implemented in OpenGL Shading Language (GLSL),
version 4.2. All tests were performed on a computer with
Intel i5-4670K configuration with 8GB RAM and GPU AMD
Radeon R9 290.

A. interactive 2.5D modeling tool

A interactive 2.5D modeling tool was implemented for
demonstrating our 2.5D modeling and shading technique. The
application support open and closed cubic spline curves as
input for the vector-art drawings. The user can navigate in 3D
space from a virtual trackball or by manipulating a small view
cube located in the upper right corner of the viewport.

Generally, the user draws three 2D views of the model.
Being the front views, side and top the most used. These
orthogonal views can be easily accessed by selecting one of the
display cube sides. Other viewing angles are simply accessed
freely rotating the view cube.

The editing tools are accessed by a tool bar, wish incorpo-
rate the basic features: pen, move and select tool. (Figure 4).



Fig. 4. The interactive 2.5D modeling tool interfaces: In the back, the main
window with a Phong shaded shape; In the front, the shading and material
library window. Extracted from [10]

There is also a fourth tool that allows the creation of curves
that define shading constraints.

In addition to the basic tools for the creation of 2.5D
model, the application also provide a interface that works as a
material library containing preset shading effects. It is possible
to manipulate the parameters of each effect and save them as
new effects (bottom right of Figure 4).

B. Performances

TABLE I
TIMING RESULTS FOR RENDERING THE SHADED 2.5D BUNNY MODEL

(a) All shapes were rendered
using the same effect.

Rendering effect fps
Solid colors 983
Phong shading 82
Cel shading 81
Animated texture 78
Environment mapping 79
Gooch shading 81
Hatching (object-space) 80
Hatching (screen-space) 69
Fur simulation 39

(b) Number of shapes rendered
with a random selected shading

effect.
Shaded shapes fps*

0 983
1 220
2 190
5 179

10 102
15 73
17 64

*The average fps for shapes
rendered with random

selected shading effects

We rendered the 2.5D Bunny model (Figure 5), wish is
composed of 17 shapes, in a viewport scene with a resolution
of 1024 × 768 pixels. Table I (a) shows the frames-per-
second (FPS) where all 17 shapes were rendered using the
same effect. Most of the effects reach around 80 fps. Solid
colors are the most efficient. This is caused by the steps
that are not present in this effect: estimation of the normals,
use of 3d reference model and dynamic grid tessellation. The
hatching in screen space also has a worse performance when
compared to the same effect in the object space, due to the
additional processing time to map the hatching textures in

Front Side

Top

Fig. 5. The 2.5D Model Bunny. on the top left the input drawing stroke; The
model shaded with a combination of cartoon shading, Gooch shading, Phong
shading, fur simulation, environment mapping, animated texture shading and
texture hatching.

screen space. The fur simulation was the most time-consuming
effect because it requires the geometry instancing of new
primitives directly in the geometry shader.

Table I (b) presents performance results showing the impact
of the number of shapes shaded with Phong shading for a 2.5D
model. The first column shows the number of shapes shaded
with a random selected shading effect (Phong Shading, Car-
toon Shading, Gooch Shading, Texture Hatching, environment
mapping or fur simulation were available) while the remaining
shapes are filled with solid colors. Therefore, the use of distinct
shading effects in the same model does not significantly impact
the average performance.

V. CONCLUSION

We developed a technique to interactive lighting and shading
2.5D models. Prior to this work, 2.5D modeling techniques
supported only shapes filled with solid colors. Our technique
estimates 3D geometric properties to simulate 3D shading and
lighting effects to 2.5 models.



This work was presented and published at the Graphics
Interface 2015 conference as Interactive Shading of 2.5D
Models [10].

As a byproduct of our technique, we implemented an
interactive software tool to demonstrate different 3D shading
and lighting effects in the 2.5D modeling.

Future works can tackle some limitations of the technique,
wish includes: Highly concave shapes and the use of a proxy
reference model for texture mapping may present distortions
and aliasing artifacts. Therefor, it is necessary to investigate
new texture mapping methods that fit the structure of the
2.5D model; The process of estimating the relief curves may
be enhanced in order to provide methods to produce various
visual effects such as simulated shadows, self-shadowing,
global lighting effects, physical influence on materials (fluid
simulations and gases).

An application of this work is the automatic creation of
characters in 2.5D from sketches drawn by artists. In the 3D
character creation process, the artist usually draws character
sketches at various angles, similar to the inputs of a 2.5D
model. The conversion of these drawings to 2.5D shapes would
enable the construction of a 2.5D character quickly and easily.
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[25] H. Bezerra, B. Feijó, and L. Velho, “An image-based shading pipeline
for 2d animation,” in Proceedings..., M. A. F. Rodrigues and A. C.
Frery, Eds., Brazilian Symposium on Computer Graphics and Image
Processing, 18. (SIBGRAPI). IEEE Computer Society, 2005. [Online].
Available: http://urlib.net/sid.inpe.br/banon/2005/07.12.02.02

[26] M. K. Lessa, “Construção e modificação de imagens 2d iluminadas por
mapas de normais reconstruı́dos em tempo de interação,” Master’s thesis,
Universidade Federal Fluminense, 2011.

[27] Qt, “Qt,project http://qt-project.org,” 2015.

http://dx.doi.org/10.1111/j.1467-8659.2009.01631.x
http://doi.acm.org/10.1145/1778765.1778796
http://dl.acm.org/citation.cfm?id=2788907
http://doi.acm.org/10.1145/508530.508538
http://urlib.net/sid.inpe.br/banon/2005/07.12.02.02

	Introduction
	Related work

	2.5D Modelling
	Lighting and Shading
	Contour Normals
	Dynamic Grid
	Normal Field
	Shading
	Contour Clipping

	Results and Discussion
	interactive 2.5D modeling tool
	Performances

	Conclusion
	References

