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Abstract—Human skin segmentation has several applications
in computer vision and pattern recognition fields, whose main
purpose is to distinguish skin and non-skin regions. Despite the
large number of available methods, accurate skin segmentation
is still a challenging task. Three main contributions toward this
need are presented in this work. The first is a self-contained
method for adaptive skin segmentation that adjusts the color
model to a particular image. The second is the combination of
saliency detection with color skin segmentation, which performs
a background removal to eliminate non-skin regions. The third is
a texture-based improvement employed to characterize non-skin
regions and thus eliminates color ambiguity adding a second
vote. Experimental results on public data sets demonstrate a
significant improvement of the proposed methods for human skin
segmentation over state-of-the-art approaches.
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I. MOTIVATION

Human skin segmentation serves as a key step in a diverse
of applications in image analysis. Summarily, it aids human
detection [1], [2], face detection [3], [4], nudity detection [5],
[6], [7], gesture analysis [8], [9] and content-based image
retrieval [10], [11] since it can benefit from any semantics
extracted from the images.

However, the applications will still demand further pro-
cessing and analysis, such that the skin detection configures
as a preprocessing stage, which creates a requirement for
speed and simplicity. The term simplicity here means that
complex configuration, parameter selection and manual adap-
tation should be avoided. In other words, the method for
skin segmentation should enable real-time applications and be
adaptable to different purposes.

There are many challenges associated with skin segmenta-
tion in real-world images. First, the images acquired through
different illumination conditions present different skin char-
acteristics. Furthermore, shadows, light intensity variation,
reflections and person’s pose cause discrepancy between skin
regions of the same image. Image resolution and size, as
well as compression techniques, are also significant aspects.
Moreover, some intrinsic difficulties implied by natural char-
acteristics of human skin include: its color varies with ethnic
diversity; its texture change with age — babies have a soft
skin while elders have a more coarse skin; elasticity, which
means that facial expressions and pose can change its aspect.
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Although not robust to all these problems, color presents a
meaningful evidence for skin detection. In fact, the vast major-
ity of researches in the literature focus on color information to
determine whether a pixel belongs to skin or not. Nevertheless,
there is an intrinsic problem associated with the use of color.
It does not provide a separability between the pixels belonging
to skin and one portion of non skin, referred to as skin-like
pixels. This transition is considerably large and can frequently
occur in an image, causing more errors than later applications
could normally afford.

II. OBJECTIVES AND CONTRIBUTIONS

The main purpose of this work is to improve the human
skin segmentation process through increasing the separability
between skin and skin-like pixels. This dissertation presents
three major contributions on this matter:
• A self-adaptive method for generating a skin color model

specific to each image, which reduces color ambiguity
and, that way, decreases the skin-like pixels. This method
presents the novelty to be self-contained, that is, differ-
ently from usual approaches that rely on face detection
or previous knowledge, it uses spatial analysis to obtain
true skin regions from which a specific color model is
derived.

• A saliency-based framework for saliency detection to
remove background skin-like regions. A saliency detector
captures the regions that “catch the eye” on an image.
Thus, they can be used to separate foreground from back-
ground. A framework that combines color skin detection
with a saliency detector is proposed to remove false
positives from the first process.

• A texture-based method for modeling texture energy
in skin and non-skin regions. It aims to remove the
ambiguity caused by color, providing a second vote for
classification. Texture is captured by a convolution filter
and an energy measure is derived from each region to
characterize it. The skin and non-skin energies are learned
through Gaussian models, which are then applied to the
image to obtain a skin texture probability. Skin texture
and skin color are combined in a way that the pixel is
considered skin only if both information agree.

III. BACKGROUND

Many approaches found in the literature have been proposed
to address the problem of human skin segmentation [12], [13],



[14], [15]. The simplest and earlier strategies for classifying
a pixel are based on static decision rules that restrict skin
to some specific intervals on a chosen color space. Sobottka
et al. [16] developed a skin detection method based on the
HSV color space. A transformation of RGB color space into
a single-channel was proposed by Cheddad et al. [17] for skin
detection purpose. Hsu et al. [18] adopted various thresholds
that partition the HSI color space into three zones that define
the skin pixels. A rule based on two quadratic functions for
the normalized RG space was proposed by Soriano et al. [19].

A more sophisticated scheme, proposed by Jones and
Rehg [2], is based on modeling the statistical distribution of
color. There are two main approaches: parametric and non-
parametric techniques. Both approaches calculate the probabil-
ity of a given color (c) to be skin (P (skin|c)), which generates
a probability map such that the segmentation can be performed
through a threshold. However, parametric approaches assume
that the skin distribution fits some explicit model.

In order to have a more accurate model, it is possible
to suppose that there is an overlap between skin and non-
skin colors [13], such that many researchers have adapted
the mentioned methods according to the context. For instance,
Kovac et al. [20] defined different rules depending on lighting
conditions, whereas Phung et al. [21] created an iterative
method for determining an optimal threshold for the proba-
bility map of a particular image.

Nevertheless, the most significant results are obtained by
content-based adaptation, more specifically for face detection.
The first of such approaches [22] uses the region acquired
by a face detector to update a unimodal Gaussian previously
determined. Taylor and Morris [23] used only the facial skin
in normalized RG to construct a Gaussian model, discarding
any previous training. A more robust technique [24] uses the
face region to build a local skin histogram and a Pface(skin|c)
is derived and combined with the general probability for the
final map.

Another strategy, known as spatial analysis, considers the
structural alignment in the neighborhood of pixels classified
as skin, generally with a probability map, such that it refines
the segmentation process by removing false positives. Most
of these techniques perform an expansion of seeds found by
a high threshold. This expansion can be performed through
different criteria, such as energy accumulation [24], cost
propagation [25] and threshold hysteresis [26]. Although cost
propagation is complex, it usually provides superior results,
where the Dijkstra’s algorithm [27] is used to calculate the
shortest routes in a combined domain composed of hue,
luminance, and skin probability.

Wang et at. [28] used fixed rules for RGB and YCbCr
color spaces, then combined the result of both and applied the
gray-level co-occurrence matrix (GLCM) [29], [30] to extract
texture features and classify the found skin regions. Although
the false positive rate decreased, the true positive rate also
decreased.

Ng and Chi-Man [31] combined both color and texture
features for skin segmentation. The texture features were ex-

tracted through 2D Daubechies wavelets, whereas a Gaussian
mixture model was used to classify the skin regions. Non-
skin regions were discarded by using K-means. The method
is dependent on the number of clusters and the improvement
was not significant since the decrease in true skin detection is
approximately the same as false skin detection.

Jiang et al. [32] employed a histogram-based skin proba-
bility map to find initial skin candidates. A lower threshold
was used as a second stage to discard skin-like pixels. Gabor
wavelets were used to extract texture features and combined to
produce an untrained texture map. Therefore, a threshold on
this map was required to eliminate non-skin texture. Similarly
to other methods, this approach also compromises the true skin
detection. Then, the authors used color and texture information
to select markers of watershed segmentation [29] to grow skin
regions.

IV. ADAPTIVE HUMAN SKIN SEGMENTATION METHOD
BASED ON SEED GROWING

We propose a skin segmentation method that combines
spatial analysis and adaptive models for better skin probability
estimation. The main steps of our method are presented in
the diagram shown in Figure 1. First, seeds are extracted
from a general skin probability map, then an edge restriction
propagation is performed and the generated segment is used
to build a local skin histogram. Local and global maps are
combined to achieve the final segmentation.

Input image

General probability map

Seeds Edges Grown regions Local histogram

Local probability mapFinal probability map

Fig. 1. Main stages of the skin detection process based on seed growing.

The global probability map is generated by Bayes’ rule with
the posterior probabilities defined through histograms of skin
and non-skin colors collected from a training set. Contrary to
the usual approach using a fixed high threshold to the map,
we estimate the best high threshold for a particular image,
by first applying a mean filter to the probability map and
then take the maximum probability as seed threshold for the
original probability map. To allow for images with no skin at
all, if the maximum value is smaller than a minimum threshold
(Tseedmin

), it is discarded, otherwise it is assigned as the
seed threshold for the original probability map. Therefore,
we obtain seeds with high probability by considering the
neighbors probability as well.

To prevent the occurrence of false positives, we exclude the
choice of seeds located in edge regions, since skin is usually a
smooth and homogeneous region. In order to avoid “leakages”
we modified the cost propagation proposed in Kawulok [25]
by adding a constraint in which the propagation cannot flow



out the image edges. These edges are found by combining
(through logical or operator) the results of Canny detector
for each of the three channels in HSV color space. Following
that, a morphological dilation operation is performed, such that
small gaps can be closed. Besides preventing false positives,
this also speeds up the algorithm, once the original approach
calculates the costs from the seeds to every other pixel in the
image.

The propagation process generates a cost for each pixel
that can be reached and the final skin regions are obtained
from a threshold in the cost map. Once we have generated
these regions, we use them to build a local statistical model
that adapts to the particular conditions of the image. From
the histogram of these resulting skin regions, we obtain a
Plocal(c|skin). As for non-skin, we assume that the local
distribution follows the global one. The final probability is
defined as

P (skin|c) = γPlocal(skin|c) + (1− γ)Pglobal(skin|c) (1)

where Plocal(skin|c) and Pglobal(skin|c) are calculated by using
local and global data, respectively. The parameter γ controls
the importance of the local model.

From Equation 1, we generate the final skin probability
map, in which the detection can be performed through a fixed
threshold.

V. HUMAN SKIN SEGMENTATION IMPROVED BY
SALIENCY DETECTION

We propose a method for reducing the false positive rate in
skin segmentation with the use of a saliency detection method.
This is based on the premise that, although, the skin is not
always salient in the image, the background will be not salient.
Therefore, saliency detection methods that operate by finding
the background to achieve the salient region are preferable,
for instance, methods with boundary priors. The main steps
of our skin detection framework are illustrated in the diagram
of Figure 2.

Fig. 2. Main stages of the proposed skin detection framework based on
saliency.

First, the skin detector (Stage 1) is applied to the image,
creating a probability map (Pmap) (Stage 2), which is used to

build a weighted image (Stage 3), expressed as

WI(i, j, k) = Pmap(i, j) · I(i, j, k) (2)

where WI(i, j, k) represents the weighted image pixel in
channel k and I(i, j, k) the original image pixel in channel
k.

The weighted image serves as input for the saliency detector
(Stage 4), whereas the probability map is also used to exclude
probable skin from the boundary list. This is done with a
threshold (Tβ) applied to the map and aims to prevent skin
pixels adjacent to the boundary from being discarded. Since
many saliency implementations use superpixels, in that case
the probability map needs to be modeled with the same
superpixel structure, however the representative value of each
superpixel will be the minimum value of the region instead of
the usual mean value. This is done such that only regions con-
taining all probability values larger than Tβ will be excluded
as background.

The output saliency map (Smap) (Stage 5) is again combined
with Pmap, expressed as

Fmap(i) = γPmap(i) + (1− γ)Smap(i) (3)

where Fmap is the final skin map (Stage 6) and γ defines the
weight of the probability map in the mean combination in the
range between 0 and 1.

VI. SKIN SEGMENTATION IMPROVED BY TEXTURE
ENERGY UNDER SUPERPIXELS

We propose a method for reducing the rate of false positives
in skin detection caused by skin-like color. Law’s texture
energy measure [33] is employed in the process, which works
on the response of the intensity image to a special filter mask.
The main steps of our skin detection method are illustrated in
the flowchart of Figure 3.

Input image

Superpixels

Color map

Filtered image

Texture map

Texture
Gaussian
Models

Final map Final segmentation

Fig. 3. Main stages of the proposed skin detection method improved by
energy under superpixels.

The filters defined by Law are build by the product of two
vectors obtained from a fixed set of 1-D masks designed to
detect edges, spots, ripple, among others. A filter is named
according the purpose of the vectors from which it was



produced and it’s size. For example, an E5S5 mask is a 5× 5
mask produced by the product of a 1-D edge mask and a 1-D
spot mask.

To allow the calculation of energy over a region and prevent
that the same region covers both skin and non-skin, we use
the Simple Linear Iterative Clustering (SLIC) [34] technique
for segmenting the image into superpixels. Thus, we calculate
the mean energy of each superpixel in the training and test
sets.

The goal of the training stage is to obtain two Gaussian
models, one for skin and another for non-skin texture en-
ergy measures. The images are submitted to superpixels over
segmentation and convoluted with a spatial filter. The texture
energy is computed for each superpixel, such that mean and
standard deviation are extracted for each class (skin and non-
skin), forming the two Gaussian models.

In the test stage, once the energies of an image have been
computed through the same pipeline as in the training step,
the skin and non-skin probability densities for each superpixel
are obtained. The skin probability given the texture energy is
computed as

P (skin|EΦ) =
f(EΦ, µskin, σskin)

f(EΦ, µskin, σskin) + f(EΦ, µ¬skin, σ¬skin)
(4)

where EΦ is the energy measure and f(EΦ, µclass, σclass) is the
Gaussian probability density function for the texture energy.

As texture in a face can vary from the rest of the body,
the skin probability in the region close to the nose, around
the eyes and mouth will be very low. Thus, it is necessary to
apply a heuristic to avoid this type of problem. In our work,
we perform a postprocessing mechanism, where areas with low
probabilities, surrounded by high probabilities, are filled with
the mean of these surroundings high probabilities. Finally, the
result of this process constitutes the skin texture probability
map.

The texture probability map (Tmap) is combined with a color
probability map (Cmap) through an AND operation to generate
the final skin probability map Fmap, expressed as

Fmap =
√
Cmap · Tmap (5)

which means that high probability values will be assign to
regions where both color and texture agree as skin region.

VII. EXPERIMENTS

The experiments were evaluated on two different data
sets. To train the Bayes classifier, we used 8,963 non-skin
images and 4,666 skin images from the Compaq database [2].
For evaluation and comparison purposes, we used the ECU
database [14] divided into 1,000 images for validation and
3,000 images for testing. The metrics employed to assess the
performance of the methods were true positives rate (ηtp), false
positive rate (δfp), Fscore and detection error δmin.

For comparison with our self-adaptive method, we selected
some state-of-the art methods available in the literature:
Cheddad’s decision rule [17], statistical model [2], face-based

adaptation [24] built with Viola-Jones face-detector [35] and
cost propagation [25].

Figure 4 presents a comparison of the ROC curves. The
points in the curves were obtained with different thresholds,
except for Cheddad’s rule, whose output is binary.
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Fig. 4. ROC curves for comparison of the tested methods.

Table I shows the obtained results for each method consid-
ering the point closer to coordinate (0, 1) in the ROC curve.

TABLE I
DETECTION RESULTS FOR DIFFERENT METHODS.

Method ηtp (%) δfp (%) Fscore (%) δmin (%)

Cheddad 89.33 19.51 64.78 30.18
Statistical model 87.90 14.51 69.71 26.61
Face-based adaptation 86.83 11.79 72.63 24.96
Cost propagation 90.40 14.46 71.05 24.06

Proposed method 89.78 11.24 74.95 21.46

Considering the statistical model as a baseline, the face-
based approach shows a decrease in the false positive rate
and the cost-propagation an increase in the true positive rate,
whereas our method presents enhancement for both metrics,
giving a significant upgrade to Fscore.

In order to evaluate the improvement for adding tex-
ture and saliency according our framework, we selected the
three widely used skin detectors with different approaches:
Cheddad’s rule [17] (rule based), Gaussian Mixture Model
(GMM) [2] (parametric) and Histogram Model [2] (non-
parametric).

Figures 5 and 6 show comparative ROC curves between
original skin detectors and our combination with saliency
detector and texture, respectively.

Tables II and III show the results for the best points. A
noticeable aspect in Table II is that the Gaussian Mixture
Model method, which holds the worst results individually,
when submitted to the our improvement, achieves superior
results when compared to the best method (Histogram) without
improvement.

For the texture (Table III), although the improvement has
not been so high, it is still noticeable. This is because the



False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0% 10% 20% 30% 40%

5
0

%
6

0
%

7
0

%
8

0
%

9
0

%
1

0
0

%

Histogram

Improved Histogram

GMM

Improved GMM

Cheddad et al.

Improved Cheddad et al.

Fig. 5. ROC curves for the results of the improvement through our saliency
method.
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Fig. 6. ROC curve for the results of the improvement through our texture
method.

TABLE II
DETECTION RESULTS FOR DIFFERENT METHODS WITH SALIENCY.

Method
Original + Saliency

Fscore (%) δmin (%) Fscore (%) δmin (%)

Cheddad 64.78 30.18 71.67 26.29
Gaussian Mixture 63.09 32.76 72.08 25.93
Histogram Model 66.95 29.33 73.63 25.91

TABLE III
DETECTION RESULTS FOR DIFFERENT METHODS WITH TEXTURE.

Method
Original + Texture

Fscore (%) δmin (%) Fscore (%) δmin (%)

Cheddad 64.78 30.18 67.38 28.90
Gaussian Mixture 63.09 32.76 65.64 30.41
Histogram Model 66.95 29.33 69.17 27.59

texture analysis acts well in heterogeneous ambiguous regions,
whereas the saliency works better in person centered images,
which is more common.

VIII. CONCLUSIONS

In this work, three main contributions are achieved to
improve the separability between skin and skin-like regions for

human skin segmentation: a self-adaptive skin color model, a
method that uses saliency for non-skin background removal,
as well as a combination of skin texture and color.

The self-adaptive proposed method fits a skin color model
to particular conditions of the images, addressing the problem
of lighting variation and natural differences that occur in skin
colors among people.

The improvement by saliency detection is a novelty since it
has not been well explored in the skin segmentation problem,
with many advantages: no training is necessary, it is fast and
there are many different methods that can be employed.

The use of texture for skin detection is a complex task.
Image quality, person’s pose, age and amount of hair represent
major obstacles to define a skin pattern. Thus, our method fo-
cuses on simple features, such as coarseness and homogeneity.
Nonetheless, they are not explicitly defined but learned from
a training set.

Experiments demonstrated that the self-adaptive approach
overcomes not only non-adaptive methods but also an adaptive
method based on faces. This is explained due to the inevitable
errors brought by the face detector and because faces contain
more than just skin. Moreover, it was possible to observe
from the experiments that any type of color-based detector
can be combined with saliency or texture, providing an overall
improvement. The weaker the detector is, the larger is the
improvement.

IX. PUBLICATIONS

The following four publications resulted from this disserta-
tion:
• a self-adaptation method for human skin segmentation

based on seed growing, described in Section IV, was pre-
sented in the 10th International Conference on Computer
Vision Theory and Applications (VISAPP) [36].

• an extension of the previous work [36] using genetic
algorithms for online parameter optimization and a fuzzy
fusion operation for combining global and local color
maps and a texture map has been accepted for publication
as a book chapter in the special issue Hybrid Soft
Computing for Image Segmentation [37].

• a human skin segmentation method improved by saliency
detection, described in Section V, was presented in the
16th International Conference on Computer Analysis of
Images and Patterns (CAIP) [38].

• a human skin segmentation method improved by texture
energy under superpixels, described in Section VI, was
presented in the 20th Iberoamerican Congress on Pattern
Recognition (CIARP) [39].
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[9] J. P. Wachs, M. Kölsch, H. Stern, and Y. Edan, “Vision-based Hand-
Gesture Applications,” Communications of the ACM, vol. 54, no. 2, pp.
60–71, Feb. 2011.
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