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Abstract—Recent technological advances have provided de-
vices with high processing power and storage capacities. Video
cameras are found in several places, such as banks, airports,
schools, supermarkets, streets, homes and industries. Despite
this technological potential, most of the acquired videos are
only stored and never analyzed. The flexibility in the use of
cameras and computational tools allows their application in areas
such as surveillance, strategic planning, crime prevention, man-
ufacturing, traffic monitoring, among others. Video equipments
have continuously improved, achieving high resolution rates and
frames per second. However, most of the video analysis tasks are
still performed by human operators, whose performance may
be influenced by factors such stress and fatigue. In order to
change such current scenario, this work proposes and evaluates
the development of a methodology for identifying common human
actions in videos by means of a CMSIP descriptor (Cumulative
Motion Shape’s Interest Points) applied to a multilevel prediction
scheme with retraining. The approach is built by dividing the
descriptor into portions that can be considered and interpreted
independently by following distinct ways on the classification
model, such that, in a later step, a central mechanism will be
responsible for deciding which action is being observed in the
video sequence. Our method has proved to be fast and with
accuracy compatible to the state-of-the-art on known public data
sets. Furthermore, the developed prototype demonstrated to be
a promising tool for real-time applications.

Keywords-multilevel prediction; action recognition; machine
learning; computer vision.

I. INTRODUCTION

Surveillance systems have a wide range of applications and
can be used in tasks such as crime prevention, accident moni-
toring, personal identification, vandalism prevention, among
several others [1]. Through the images obtained by video
cameras processed by a monitoring system, it is possible to
control the activities in complex scenarios and with a large
concentration of people, which could be impracticable to be
done by a human operator.

The development of digital technology has promoted sub-
stantial progress in the area of visual surveillance. Cameras
have been developed at higher resolution, smaller dimensions
and higher frame rates. Videos acquired by cameras have
been recorded in larger quantity due to the increase in storage
capacity of the digital media.

1 Ph.D. Thesis.

In general, current researches focus on the development
of intelligent surveillance systems that aim at interpreting
human activity, instead of using a passive monitoring system,
which is the most commonly employed technology. Intelligent
systems may allow the reduction of the necessity of monitoring
operators and can help the analysis of images and videos. Nev-
ertheless, intelligent monitoring systems should be capable of
automatically extracting complex information of the observed
scene and classifying its main events.

The identification of human actions refers directly to the
comprehension of human behavior. This understanding in-
volves modeling and classifying actions within a restricted set
of rules. The main strategy for this problem is to divide human
actions into stages and classify them. The automatic analysis
and classification of actions from surveillance cameras can aid
or, sometimes, substitute the human monitoring operator. An
effective monitoring system can promote the replacement of
current passive systems employed in surveillance and improve
the identification of events of interest.

This work describes a real-time action identification method
based on motion shapes. A new multilevel descriptor is applied
multiple times to a single classifier. The algorithm assumes
that cumulative motion shapes (CMS) can provide enough
information about the action being performed in a video
stream. To deal with different possible scenarios of action
occurrence, a set of CMS is extracted according to the number
of frames. Each CMS is used as an individual entity in the
training stage. The proposed action identification method is
evaluated on five public datasets (Weizmann, KTH, MuHAVi,
IXMAS and URADL).

II. DATASETS

There are several public datasets available for action recog-
nition. In several works, the terms action and activity are used
interchangeably. The following is a summary of the datasets
used in our experiments. Some samples are shown in Figure 1.

Weizmann [2] consists of 10 classes, with 9 actors perform-
ing each action, sometimes with some actors performing them
more than once, resulting in 93 videos. The dataset contains
a total of 5, 701 frames, 228.04 seconds captured at 25 FPS,
size of 180 × 144 pixels. All the actions occur in the same
static background.



(a) Weizmann [2] (b) KTH [3] (c) MuHAVi [4] (d) IXMAS [5] (e) URADL [6]

Fig. 1. Samples extracted from some public datasets.

KTH [3] consists of 6 classes, with 25 actors performing
each action, in 4 different scenes, with the exception of one
person, that performs one action (hand clapping) in only 3
scenes, resulting in 599 videos. The dataset contains a total of
289, 715 frames, 11, 375.32 seconds captured at 25 FPS, with
size of 160× 120 pixels. Most videos have camera movement
(zooming, panning and tilting).

MuHAVi [4] (Multicamera Human Action Video Data)
consists of 17 classes, with 7 actors performing each action,
totalling 119 videos. The actions occur in a closed scenario,
with 8 cameras surrounding it. The dataset contains a total
of 134, 085 frames, 5, 368.16 seconds captured at 25 FPS,
size of 720 × 576 pixels. The MuHAVi dataset has a subset
of manually annotated sequences (MuHAVi-MAS), in which
the frames are binary images of the silhouette locations. It
is divided into 14 primitive actions and it is usually called
MuHAVi14 in the literature. This subset, however, has some
actions that vary only in direction (for instance, run left and
run right) that are rearranged together, forming another subset
with 8 classes, called MuHAVi8.

IXMAS (INRIA Xmas Motion Acquisition Sequences) [5]
contains 13 classes, however, only 11 are used for validation
in the literature. The dataset also offers manually annotated
silhouettes. The sequences are recorded in resolution of 390×
291 pixels at 23 FPS. The actors choose freely position and
orientation to perform the action, where each action is acquired
by five cameras in distinct positions (four side and one top
view.)

The URADL (University of Rochester Activities of Daily
Living) contains 10 activity daily action classes recorded in
high resolution (1280×720 pixels) and 30 FPS. The actions are
performed by 4 distinct actors in an indoor environment with
a fixed camera. The dataset offers short sequences containing
only the background to be used in a previous learning for
segmentation purpose.

III. RELATED WORK AND CONTRIBUTIONS

The classifiers are not a novelty in the literature, but their
application in action recognition is recent. Typically, they refer
to algorithms requiring special cameras, image processing and
learning techniques with large amounts of data. This section
introduces concepts related to the main stages of an action
recognition system and includes a survey of relevant works.

In the computer vision area, the semantic interpretation of
information can be obtained through image or video analysis
algorithms. In action recognition, this process may include the

detection and segmentation of motion. Subsequent steps of the
classification process strongly depend on this step.

Tables I, II, III and IV present accuracy results for our
method and others available in the literature. In all datasets,
our work is superior or among the best accuracy values.

TABLE I
ACCURACY RESULTS FOR KTH AND WEIZMANN DATASETS.

Work Dataset

KTH Weizmann

Bregonzio et al. [7] 93.1 96.6
Ryoo and Aggarwal [8] 93.8 -
Sun et al. [9] 94.0 97.8
Wang et al. [10] - 93.3
Ta et al. [11] 93.0 94.5
Raja et al. [12] 86.6 -
Hsieh et al. [13] - 98.3
Cheema et al. [14] - 91.6
Baccouche et al. [15] 92.2 -
Le et al. [16] 93.9 -
Bregonzio et al. [17] 94.3 96.7
Junejo and Aghbari [18] - 88.6
Zhang and Tao [19] 93.5 93.9
Onofri and Soda [20] 97.0 -
Chaaraoui et al. [21] - 90.3
Ji et al. [22] 90.2 -
Guo et al. [23] 98.5 100.0
Moghaddam and Piccardi [24] - 96.8
Alcantara et al. [25]† - 94.6
Tran et al. [26]‡ 87.1 -
Alcantara et al. [27]† 90.1 96.8
Cai et al. [28] - 97.9
Antonucci et al. [29] 72.5 74.7
Guo and Chen [30] 94,7 -
Moayedi et al. [31] 100.0 100.0
Yang and Ma [32]‡ 96.0 -
Chen et al. [33]‡ 97.1 -
Zhu and Xia [34] - 98.5
Han and Li [35] 95.2 99.2
Alcantara et al. [36]† 89.1 97.4
Alcantara et al. [37]† 92.2 100.0

†Work developed during the Ph.D. thesis.
‡KTH validation using a subdivision into different scenarios.

IV. METHODOLOGY

In our methodology, an action is considered as a set of
motion patterns developed over time. However, instead of
using shapes in a bag-of-words [9], [17], [20], [56], our work



TABLE II
ACCURACY RESULTS FOR MUHAVI, MUHAVI14 AND MUHAVI8

DATASETS.

Work Dataset

MuHAVi MuHAVi14 MuHAVi8

Wu and Jia [38] 69.2 - -
Singh et al. [4] - 97.8 82.4
Moghaddam and Piccardi [39] 80.4 - -
Karthikeyan et al. [40] 88.2 - -
Cheema et al. [14] - 86.0 95.6
Moghaddam and Piccardi [24] 92.0 - -
Chaaraoui et al. [21] - 91.2 97.1
Chaaraoui and Flórez-Revuelta [41] - 98.5 100.0
Alcantara et al. [27]† 89.1 94.1 100.0
Cai et al. [28] - 98.5 -
Alcantara et al. [36]† 91.6 95.6 100.0
Alcantara et al. [37]† 92.4 95.6 100.0

†Work developed during the Ph.D. thesis.

TABLE III
ACCURACY RESULTS FOR IXMAS DATASET.

Work Accuracy (%)

Weinland et al. [42] 57.9
Evgeniou and Pontil [43] 78.2
Farhadi and Tabrizi [44] 58.1
Reddy et al. [45] 72.6
Liu et al. [46] 75.3
Junejo et al. [47] 72.7
Li and Zickler [48] 81.2
Li et al. [49] 90.5
Huang et al. [50] 57.3
Wu and Jia [51] 88.8
Yan et al. [52] 82.5
Alcantara et al. [36] 81.1

TABLE IV
ACCURACY RESULTS FOR URADL DATASET.

Work Accuracy (%)

Bobick and Davis [53]† 33.0
Dollar et al. [54]† 36.0
Laptev et al. [55]† 59.0
Messing et al. [6] 63.0
Messing et al. [6] 67.0
Messing et al. [6] 89.0
Alcantara et al. [36] 88.0

†Experiments performed by Messing et al. [6].

employs every set of indexed points of a silhouette as a
fragment that contributes independently to identify the action.
Figure 2 shows a diagram with the main stages of our action
identification methodology.

To acquire the silhouette of a person performing an action,
a motion segmentation is initially performed. This information
can be obtained when analyzing adjacent frames, or, for long
sequences, the history of all frames until the current instant.
The motion segmentation returns body parts or an entire
person involved in the action. For instance, in the two-hands

wave, only the hands and arms are segmented. In this work,
the silhouette is the portion of the body that moves to perform
a specific action, therefore, the silhouette is not perfectly
extracted.

The number of frames used in CMS composition remains
the same for the entire training and prediction steps in a
determined dataset. Figure 3 shows a sample of a CMS
composition where (a)-(c) three motion shapes can be seen
and (d) its union resulting in the built CMS.

(a) Frame 1 (b) Frame 2 (c) Frame 3 (d) CMS

Fig. 3. (a)-(c) Samples of an inaccurate motion extraction in a jump action
from Weizmann dataset; (d) resulting CMS from the union of (a) to (c) [57].

The algorithm for interest point detection selects the points
of the motion shape that are closest to the control points fixed
in a bounding box. These fixed points are called key points
and are equally spaced in the bounding box. The number of
key points is parameterized, however, it is always constant in
a same dataset.

Let ca, cb, cc and cd be the four corners of a bounding box
in clockwise direction. Point p represents the k-th subdivision
between two adjacent corners, denoted by pk in Equation 1,
where D is the number of subdivisions in the bounding box,
x is any of the corners and y is the subsequent corner in
clockwise direction.

pk =
k.(cx − cy)

D
+ cx k → 0 . . . D − 1 (1)

There is no relation of order or priority among CMSs in
a video stream. Extracting multiple samples from the same
sequence allows for the learning process to be independent of
when the action starts. For example, a running person can start
the action with both feet together or with one foot ahead.

Finally, a normalization between [−1, 1] is applied to keep
the center of the bounding box at the origin of Cartesian
plane. This normalization makes the classifier robust to scale
variations among distinct video streams or even zoom effects
in a same stream. The normalized coordinates of each interest
point form the action descriptor.

A. Descriptor Construction

The descriptor is built through the union of normalized
coordinates of interest points obtained from a constant number
of CMSs. To guarantee that the number of CMSs in the
descriptor is constant, a sampling of N points is applied,
where N is proportional to the action duration observed in
the specific dataset.

The construction of the descriptor considers that many of the
keypoints will have little (or no) influence on the classification
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Fig. 2. Main stages of the proposed action identification methodology.

process. Principal Component Analysis [58] is used to reduce
the dimensionality of the descriptor, while maintaining only
its most important features. This makes the descriptor compact
enough to be used by the classifiers. It is worth mentioning
that there is no order relation among the samples.

B. Machine Learning

SVM and k-NN classifiers are used in several works for
supervised training. We also used both classifiers to validate
the proposed method. The training and prediction stages
perform multiple operations in the classifier, one for each
CMS.

For the SVM, a variation known as one-against-all was used
for multiclass purposes. Since k-NN is natively multiclass, to
insert a CMSIP into the descriptor is only necessary to train the
set of CMSs that belong to the CMSIP in the same classifier.

C. Training and Prediction

Considering a CMSIP formed by a set of CMSs, each CMS
is used for training independently and it has a label corre-
sponding to the action associated with it. The training process
is done multiple times, where each training step depends on
the instances and results obtained from the previous prediction.
The classifier chosen for the final stage is k-NN since it proved
to be substantially faster. Training time is a critical factor
in our method and SVM was not advantageous in terms of
accuracy.

The value k for k-NN is an input parameter whose value is
proportional to the amount of video sequences and the number
of frames in each sequence. This value indicates the number
of neighbors that should be considered in the prediction step.

In addition to the value k, a value k′ (k′ ≤ k) was
considered in our work. Thus, if an item of data to be searched
does not contain at least k′ votes, it is not considered as
a valid vote and it is not included in the final count. This
scheme allows for a blank vote when the classifier does not
have confidence in the resulting response.

In the prediction step, the classifier identifies the less likely
class and remove it from the set of possible classes for the
instance being tested. The least likely class is identified as
follows: for each descriptor attribute, a prediction is performed
and this attribute is classified as one of the possible classes

as a vote or it is classified as an outlier, such that its vote is
not counted. At the end, after summing up the votes for each
class, the class with less votes is discarded. When a class is
removed, it is necessary to retrain the k-NN classifier with the
remaining classes. After consecutive removals, there will be
only a single class and, trivially, it is possible to conclude that
this will be the final class to be represented by the descriptor.
This response is sent to the output, ending the classification
process.

V. RESULTS

As mentioned in the previous section, k-NN and SVM
classifiers were chosen for the tests. The parameters used
in the descriptor were obtained from exhaustive grid search.
They differ according to the databases due to image resolution,
amount of motion, among other factors. The thesis presents a
deeper discussion on the parameter configuration.

The method adopted for training and testing was the leave-
one-out. Although this technique requires intensive processing
time, it provides an accurate assessment of the classification
results.

The best values found for each parameter are shown in
Table V. The following parameter values are reported: number
of forms used in the construction of CMSIP (NF ), number
of CMSIPs to be sampled (NS), dimensions of the array
of control points (DX and DY ), number of dimensions for
PCA algorithm (ND), and values of k and k′ for k-NN
algorithm. The last column shows the accuracy and execution
time, respectively.

TABLE V
PARAMETERS EMPLOYED IN OUR EXPERIMENTS TO ACHIEVE HIGH

ACCURACY.

Dataset NF NS DX,DY ND k,k′ Accuracy (%)

Weizmann 2 40 8, 4 34 2.2 100.0
KTH 4 30 8, 8 18 6.2 92.2
MuHAVi 6 80 20, 10 55 8.3 92.4
MuHAVi14 4 40 16, 8 35 4.2 95.6
MuHAVi8 2 20 16, 8 32 2.1 100.0
IXMAS 2 50 8, 8 30 1.1 82.6
URADL 2 25 16, 16 60 2.2 90.7



Despite the multilevel prediction process, the algorithm is
efficient enough to run in real-time applications. As shown in
Table VI, the number of frames per second (FPD) achieved
by the proposed method is higher than 24 for the majority of
the evaluated datasets, which is typically required in surveil-
lance applications. The exception was the URADL, which
was processed at 10.24 frames per second. It is important
to mention that this specific dataset contains high-resolution
video sequences, which is not usually common in surveillance.

TABLE VI
TIME REQUIRED IN THE FEATURE EXTRACTION AND CLASSIFICATION

PROCESSES.

Datasets Extraction (s) Classification (s) Frames FPS

Weizmann 4, 85 0, 270 5.701 1113, 48
KTH 1.347, 38 5, 382 289.715 214, 17
MuHAVi 2.850, 29 1, 504 137.085 48, 01
IXMAS 865, 464 2, 308 34.155 39, 36
URADL 7.100, 6 4, 732 72.729 10, 24

VI. PUBLICATIONS

The following papers have been published during the de-
velopment of this Ph.D. thesis. The first paper was published
in 2013, only one year after the beginning of the research. A
journal paper has been recently accepted for publication.

1) Action Identification using a Descriptor with Au-
tonomous Fragments in a Multilevel Prediction Scheme.
Signal, Image and Video Processing (Accepted for Pub-
lication). CAPES/QUALIS A2.

2) Real-Time Action Recognition Using a Multilayer De-
scriptor with Variable Size. Journal of Electronic Imag-
ing (JEI), vol. 25, n. 1, pp. 013020.1-013020.9, February
2016. CAPES/QUALIS A2.

3) Fast and Accurate Gesture Recognition Based on Mo-
tion Shapes. In: 20th Iberoamerican Congress on Pat-
tern Recognition (CIARP), 2015, Montevideo, Uruguay.
Progress in Pattern Recognition, Image Analysis, Com-
puter Vision, and Applications, 2015. v. 9423. p. 247-
254. CAPES/QUALIS B2.

4) Real-Time Action Recognition Based On Cumula-
tive Motion Shapes. In: International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
June 2014, Florence - Italy. v. 1. p. 2917-2921.
CAPES/QUALIS A1.

5) Motion Silhouette-Based Real Time Action Recognition.
In: 18th Iberoamerican Congress on Pattern Recogni-
tion (CIARP), November 2013, Havana, Cuba. Lecture
Notes in Computer Science, 2013. v. 8259. p. 471-478.
CAPES/QUALIS B2.

VII. CONCLUSIONS

This work presented a solution for automatic identification
of human actions in videos based on motion shape descriptors
using a multilevel prediction scheme with retraining.

In addition to the publications, this study contributed to the
construction of a new light descriptor based on Cumulative
Motion Shape’s Interest Points (CMSIP) that can be used in
any video sequence.

The work proposes a novel training and prediction method-
ology using an algorithm based on fragmented descriptors, the
Multilevel Prediction Scheme (MPS), to converge the multiple
classification responses and increase the accuracy.

The method was applied to several databases with multiple
actions and different setups for camera and environment. The
research provides new insights into the action identification
problem, providing a solution that can be expanded to other
scenarios and more complex actions.
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