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Abstract—This work deals with the problem of image restora-
tion of monocular images acquired in participating media, i.e.
media that interfere with light propagation. Specifically, the
proposed work focus on the automatic restoration of images
acquired in underwater and foggy/hazy scenes. The proposed
restoration process requires at least a pair of images as input
and produces images in which the medium effects are attenuated
and the visibility improved. Differently from previous works, our
method does not need additional equipment or information – only
a calibrated camera. Our method adopts a model-based approach
by estimating of the depth map and the attenuation coefficient.
We performed experimental evaluation in real and simulated
environments with significant improvement in the quality of the
images.

Keywords-Image Restoration, Computer Vision, Participating
Media

I. INTRODUCTION

The computer vision and image processing fields have
witnessed remarkable advances on a wide range of prob-
lems.Regardless of the advances, almost all of the techniques
assumes that scene and camera are immersed in a non-
participating medium, i.e. they assumed that the light rays
travel through the medium without any alteration. However,
there are some media that change the intensity and the
direction of the light rays, called participating medium. Among
them, the most important and discussed here are the water and
haze/fog.

A myriad of real world problems need to deal with images
acquired in participating media, e.g surveillance, mapping,
autonomous vehicles [1] to name a few. The effects of ab-
sorption and light scattering in participating medium decrease
the overall contrast on images and causes color shifting, which
reduce visibility on underwater scenes, for instance.

The main contribution is a new automatic method capa-
ble of restoring monocular sequences of images acquired
in participating medium without any additional information.
The method is based on temporal relation, three-dimensional
structure and medium properties. The main steps of our
approach are depicted in the outline in Fig. 1. The method is
initialized by using a new transmission prior that provides an
initial estimation of the scene depth which allow us to compute
the optical flow. Structure from motion techniques based on a
novel optical flow model provide an estimation of the depth
map, which is used for compute the attenuation coefficient
and subsequently to restore the image sequence. The obtained
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Figure 1. Outline of our image restoration methodology. We estimate a
transmission map based on priors. This map allows us to compute the optical
flow. Then, depth maps are predicted using structure from motion techniques.
Finally, the medium parameters and the restored images are estimated. The
orange boxes are the inputs/outputs data, the blue ellipses are the proposed
steps, and the yellow ellipse is the prior that provides the optical flow
initialization.

results shows significant improvements in several quantitative
metrics.

The rest of this work is organized as follows. After re-
viewing the state-of-the-art (Sec. II) and the light propagation
model (Sec. III); Sec. IV presents the proposed methodology.
Experimental results are presented in Sec. V. Finally, the main
conclusions are drawn in Sec. VI.

II. RELATED WORKS

Several approaches have been proposed to tackle the prob-
lem of restoring images acquired in participating media,
namely, specialized hardware [2], polarization filters [3] and
stereo images [1]. Although the high quality of the reported
results using specialized hardware, most of these methods are
expensive and require complex setup. The use of polarizers is a
cumbersome, even though images acquired with them present
good results. The main drawback of this technique is the need
to identify the maximum and minimum polarization states. In
the case of stereo systems, the correspondence even harder an
already difficult problem due to the effects imposed by the
medium.

Several methods [4], [5], [6] based on single images have
been proposed in the literature. While they show good results
on foggy images, their performance degrades in underwater
scenarios. The main issue of these methods is the estimation
based on heuristics, which may hold true only for restricted
conditions.

Very few studies have addressed the problem of image
restoration of a sequence of image. In the work of [7], a
method to estimate the medium transmission based on priors
and optical flow is presented to enhance the visibility of
hazy images. Despite the interesting results, it is based on



assumption of brightness constancy that does not hold true
on common situations. The temporal coherence is take into
account to estimate the transmission map in the work of [5],
however this method also can also fail in typical situation.

Differently from the aforementioned works, our approach
is based on temporal relation, three-dimensional structure and
medium properties. These information are fused to provide a
more robust image restoration.

III. LIGHT PROPAGATION MODEL OF PARTICIPATING
MEDIA

As stated, our methodology makes use of a light propagation
model to explain the image formation process in a participating
media. Images captured from scene immersed in participating
media can be modeled as a complex interaction between the
light, the medium and the scene structure. This interaction is
modelled as the sum of three main components [8]: Direct
illumination (Id), forward-scattering and backscattering (Ibs).
The direct component is the fraction of light that reaches the
camera. Part of the light that radiates from object is lost due
to scattering and absorption. These effects are modeled by the
direct component that can be written as:

Id = Je−ηd = Jtr, (1)

where J and d are the scene radiance and the depth, respec-
tively; η is the attenuation coefficient and tr is the medium
transmission, considered as the exponential term. According to
Schechner and Karpel [3], backscattering is the prime reason
for image contrast degradation, and for this reason the forward
scattering can be usually neglected in underwater images. The
backscattering component, Ibs results from the interaction be-
tween the ambient illumination sources and particles dispersed
in the medium. It can be defined by Eq. 2:

Ibs = A(1 − e−ηd) = A(1 − tr), (2)

where A is the global light on the scene. This term is a
scalar that depends on the wavelength and can be estimated
by finding the brightest pixel. The final model describing the
image formation in participating medium can be stated as:

I(x) = J(x)tr(x) +A(1 − tr(x)), (3)

where x are the pixel coordinates (x, y) and I(x) is the image
obtained in the participating media.

IV. METHODOLOGY

In this work we present a new automatic methodology to
restore images acquired in participating media. Assuming the
model previously described, the problem of image restoration
may be reduced to the problem of estimating the medium
parameters and the depth map.

Our methodology is composed of three main steps: the
dense correspondence between images by estimating the opti-
cal flow, the 3D structure estimation, and parameter estimation
and image restoration. Fig. 1 depicted the proposed method-
ology. We estimate a transmission map based on a new prior.
This map allows us to compute the optical flow. Depth maps
are predicted using structure from motion techniques. Finally,

the medium parameters and the restored images are estimated.
In addition to the restored images, our method also produces
an estimation of the depth maps, the camera’s pose and the
attenuation coefficient of the medium, which can be used in
specific applications such as 3D reconstruction or tracking.

A. Optical Flow in Participating Media
The problem of correspondence between images is a key

aspect for estimating the depth maps of monocular sequences.
The majority of optical flow methods assumes constancy in
the brightness patterns in the image. However, this assumption
does not hold true for participating media.

Virtually all proposed methodologies are not catered for par-
ticipating media, since the assumption of brightness constancy
is not valid in these environments. Therefore, we proposed the
Generalized Optical Flow Model (GOFM). GOFM assumes
that the brightness in the image is not constant because of
the effects of the medium. Nevertheless, it assumes that the
scene radiance is approximately constant. The final model of
the GOFM is:

(Icxu+ Icyv + Ict ) + (Ic −Ac)(Dc
xu+Dc

yv +Dc
t ) = 0, (4)

where the image derivatives Ix, Iy , and It can be estimated
as proposed by [9]. The function D(x, y, t) = − log tr(x, y, t)
represents the depth map up to scale defined by the attenuation
coefficient, where the derivatives in relation to x, y and t are
defined as Dx, Dy and Dt, respectively. The index c represents
each channel in the RGB domain. One important aspect of the
GOFM model is related to the function D(x, y, t) that needs
to be previously known. It can be estimated using priors that
allows to obtain the transmission map tr(x, y, t) based on a
single image, detailed in the next section.

The accuracy of optical flow estimation algorithms has
been improving steadily as evidenced by results on optical
flow benchmarks. The key aspects of the modern techniques
depends on mainly four factors [9]: objective function, im-
plementation details, parameter tuning and optimization tech-
niques. We performed a robust implementation based on this
guidelines.

The optical flow model cannot be solved pointwise, since
the number of parameters to be estimated is larger than the
number of linearly independent equations. This indeterminacy
is called the aperture problem. It remains true for GOFM
formulation. Color information may provide valuable infor-
mation, mainly in underwater medium that presents different
absorption rates for each wavelength. Since the contribution of
the color information in hazy scenes is limited, other constraint
needs to be applied. We adopted the global smoothness and
an incremental multi-resolution technique [9].

We performed several experiments to evaluate the robust-
ness of the GOFM using simulated and real image sequences
using absolute endpoint error and the average angular error.
The method is compared with the state-of-the-art Classic-NL
and the modern implementation of Horn-Schunk method, both
proposed by [9]. Results for both methods are obtained using
degraded images, and the restored images using a single image
method. Both error obtained using GOFM are significantly



smaller than the other methods. The results show GOFM is
more robust to the increasing of the turbidity level, presenting
an approximately linear behavior in endpoint error.

1) Initialization - Transmission Prior: The GOFM formu-
lation assumes a previous knowledge about the function D.
Recently, several priors for single images have been proposed.
They enable us to estimate the medium transmission, and,
consequently, the depth map up to scale. Among them, the
most successful method is the Dark Channel Prior (DCP) [4].
It is adopted here for hazy/foggy images. DCP is a statistical
prior based on the observation that local patch on clear day
images contain some pixels whose intensity is very low in
at least one color channel. These low intensity in the dark
channel is mainly due to three factors, as described in [4]:
a) shadows; b) colorful objects or surfaces where at least one
color has low intensity and c) dark objects or surfaces.

The observation of a low Dark Channel in images acquired
in non-participating medium is not easy to be tested underwa-
ter because of the difficulty to obtain real underwater scenes
in out of water condition. Nevertheless, the assumptions made
by [4] are still plausible.

Although the dark channel assumption sounds acceptable,
the wavelength independence is clearly false in most of the
cases. Therefore, we proposed a new prior called Underwater
DCP (UDCP). The method only uses the green and blue
channels due to the difficult to modeling the behavior of the
red channel. This phenomenon is mainly related to the high
absorption effect in the red channel [10] which imposes it to
be near zero in many situation.

Similarly to DCP, we isolate the transmission in a local
patch t̃r as:

t̃r(x) = 1 − min
y∈Ω(x)

( min
c∈G,B

Ic(y)

Ac
), (5)

where the global light A is estimated by finding the brightest
pixel in the underwater dark channel, and the transmission is
refined using the guided filter method [11]. This method also
enables us to restore using a single image, and is adopted in
the Sec. V.

We performed an experimental verification to evaluate the
assumption of the UDCP based on two statements: a) the main
assumption of the DCP for outdoor scenes remains valid if
only applied to green and blue channels, and b) the behavior
of the UDCP histogram in underwater scenes is plausible. We
create a dataset composed of 1,022 outdoor landscape images.
The results show the statistics for the UDCP assumption is a
more general supposition than the DCP assumption. Another
important characteristic concerns the blue channel, which in
natural scenes tends to be darker than the other channels.
The underwater medium is typically blue, thus increasing the
intensities of this color channel. This fact corroborates the
underwater dark channel assumption.

B. Structure from Motion

We estimated depth maps based on the correspondence
between pixels provided by the optical flow. We assumed
that the camera calibration is previously known. The adopted

methodology is based on the continuous essential matrix,
triangulation and bundle adjustment.

One key aspect of the structure from motion is the camera
calibration. For haze/fog scenes, the medium does not signifi-
cantly change the parameters of the camera. However, cameras
immersed in water are usually confined in underwater housing
filled with air, viewing the scene through a piece of glass.
Thus, the perspective model might fail because the rays do not
intersecting in one common center of projection. Nonetheless,
the perspective model is the most adopted in the literature for
underwater images because of its simplicity and robustness,
approximating the refractive effect by calibrated parameters
[12].

The epipolar constraint is a well studied tool to obtain the
camera’s pose by means of the discrete essential matrix. How-
ever, the continuous epipolar constraint is a more adequate
tool for the case of correspondences obtained by optical flow
[13]. We performed an experimental evaluation to guarantee
the robustness of the constraint. We proposed a MSAC (M-
estimator SAmple and Consensus) approach [14] to recover the
continuous essential matrix (CEM). MSAC is an improvement
in the classical RANSAC method that change the cost function
to be minimized. This new function improves the accuracy
with no additional computational burden [14]. The proposed
method uses MSAC and the eight-point algorithm [13] for
estimating camera’s pose.

The estimation of the 3D points is still sensible to noise
and misestimation of the optical flow. Thus, we performed
a triangulation and a bundle adjustment optimization [15] to
compute a reliable set of 3D points. Although the correspon-
dences between points provided by the optical flow are dense,
they are prone to outliers and missing values. Therefore, we
applied two algorithms to surpass these problems. Firstly, the
inpainting approach [16] is used to fill these gaps. After that,
we applied the guided filter method [11] to smooth the depth
maps and to improve the edges discontinuities.

C. Parameter Estimation and Restoration

This step presents two main objectives: estimating the atten-
uation coefficient and restoring the image. The restoration fol-
lows the model (Eq. 3). The direct component Id = J(x)tr(x)
is close to zero when tr(x) is small. Thus, the recovered
scene radiance J(x) is prone to noise. Thus, we restrict the
transmission tr(x) by a lower bound tr0. The final restored
image Jc(x) for each color channel c is given by:

Jc(x) =
Ic(x) −Ac

max(tr0, tr(x))
+Ac. (6)

The estimation of the transmission is based on the knowl-
edge about the depth map and the attenuation coefficient. An
interpretation from the optical model allows us to estimate
the attenuation coefficient, η, based on the depth maps in two
consecutive frames. Assuming the same 3D point in the scene,
the model is given by:

η = − 1

∆d
ln
It+1 −A

It −A
, (7)



where It and It+1 are the image acquired in a participating
medium in the time t and t+ 1, respectively. d is the depth in
time t, and ∆d is the depth variation. The estimation of η can
be reduced to line fitting because the attenuation coefficient is
assumed as constant for the entire image.

This approach is highly dependent on the depth maps and,
mainly, the optical flow. Thus, we imposed a new constraint
inspired in the work of [1] to improve the robustness of
the MSAC-based approach. We assume that the lowest 1%
intensity pixels in each color channel for all depths are
originated from black objects. Indeed, the object does not need
to be black but dark in a specific color channel. Although this
assumption is related with the dark channel assumption, it is
slightly different because it is assumed as valid for a small
portion of the pixels instead of all patches on image. The new
error function to be minimized for each color channel using
the proposed constraints is defined as:

EMSAC =
∑

ω1(It+1 −A(1 − e−η(d+∆d)))

+ω2(It −A(1 − e−ηd)) + ω3

(
It+1 −A

It −A
− e−η(∆d)

)
,

(8)

where the weights ω1, ω2 and ω3 define the importance of
each term in the error function, and they are obtained using
experimental estimation. It is worth to note that this function
is valid only for black points, i.e. J ≈ 0. This function
is non-linear and complex to be optimized in terms of η.
Furthermore, the number of outliers could be large due to the
difficult to obtain depth and correspondence between pixels in
participating medium. Thus, we also adopted an optimization
based on MSAC approach [14].

V. EXPERIMENTAL RESULTS

We obtained results using simulated and real datasets, all
of them with qualitative and quantitative evaluation. We com-
pared our approach with the single image methods DCP/UDCP
and two enhancement techniques: histogram equalization and
contrast-limited adaptive histogram equalization (CLAHE)
[17].

Quantitative results are obtained using the metric proposed
by [18]. They define three different indexes: e, r and s. The
value of e evaluates the ability of a method to restore edges,
which were not visible in the degraded image, but are visible
in the restored image. The value of r measures the quality of
contrast restoration. Finally, the value of s is obtained from the
proportion of the number of pixels which are saturated after
applying the restoration method but were not before. These
three indexes allow us to estimate an empirical restoration
score τ = e + r + (1 − s) [18], where larger values mean
better restoration.

We also perform quantitative results by matching SIFT [19]
descriptors. It allow us to evaluate the ability of the descriptor
to identify and match features from a raw and restored image.
For each pair of images, we show the number of keypoints
detected in both images and the number of correct matches.

For the simulated images whose ground truth is known,
we adopted two state-of-art Image Quality Assessment (IQA)

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2. Simulation of underwater effects using images from RGB-D
SLAM dataset [21]: (a) sample image from the dataset, (b) ground truth depth
maps, (c) simulated underwater effects with strong chlorophyll concentration
of C = 2.0mgm−3 [10] at 5m of water depth, (d) estimated depth maps,
and (e) restoration result obtained by our method. Finally, results obtained
by histogram equalization techniques (f), CLAHE (g) and UDCP (h).

measures. IQA metrics compare two images using values in
the interval [0, 1], where one means the best quality while zero
means the worst quality. The first metric, called FSIM [20], is
based on the fact that the human visual system responds to an
image mainly according to its low-level features, specifically
the phase congruency and the gradient magnitude. Secondly,
[20] also proposed an extension called FSIMc that uses the
chrominance information in the YIQ color space.

A. Simulated Results

One of the challenges with validating our methodology is
the difficulty of acquiring images of participating medium with
reliable ground truth. To tackle with this problem, we chose to
validate our method by using RGB-D sequences [21], which
includes the sequence of images and their respective depth
maps. We performed artificial degradation of the images by
simulating the effects of an underwater camera at a depth of
5m. We simulated the attenuation coefficient η and the global
illumination A as proposed in [10]. We assumed a strong
turbidity with the medium being contaminated with a strong
chlorophyll concentration C = 2.0mgm−3 [10]. Since the
depth maps provided by the dataset are not perfect, we also
performed inpainting [16] and guided filtering [11].

A sample frame and the colorized ground truth depth maps
are shown in figs. 2a and 2b. The result after simulation of
the medium effects is shown in Fig. 2c. Notice that the space
variant effect generated by the simulation, where the chair
in the farthest region presents larger decreasing in visibility
than the keyboard. Estimated depth map using our approach
is shown in Fig. 2d which is prone to error, mainly in the top
right area due to the movement of the camera. Our method
were repeated one thousand times due to their stochastic
nature and the difficult to adjust parameters that are typically
unknown. The results presented a small standard deviation
(< 1%), and we are able to recover the coefficient with just a
reduced mean squared error equal to 0.0109.

Qualitative results for the restoration of the simulated im-
ages are presented in figs. 2e-2h. We compared our approach
with the single image method UDCP, histogram equalization



Table I
COMPARATIVE STUDY USING THE AVERAGE OF QUANTITATIVE METRICS

IN SIMULATED IMAGES THAT INCLUDE IQA METRICS [20] AND SIFT
MATCHING [19]. THE BEST AND SECOND BEST RESULTS ARE

HIGHLIGHTED IN BLUE AND LIGHT BLUE LETTERS, RESPECTIVELY.

FSIM FSIMc Correct Matches Keypoints
UDCP 0.9217 0.85495 49 2091

Hist. Eq. 0.90545 0.88405 40 1844
CLAHE 0.9354 4.6273 40 2067

Our Method 0.9796 0.96595 59 1844

and CLAHE [17]. A sample restored image by our method
is presented in Fig. 2e. The restoration is not perfect but
we obtain a significant improvement, e.g. the chair in the
top left. Histogram equalization (Fig. 2f) and CLAHE (Fig.
2g) produce limited restoration in terms of visibility and
color fidelity. Results obtained by UDCP (Fig. 2h) show
improvement in terms of visibility, but the method distorts
the colors, e.g. white desk with some red halos.

Table I shows quantitative results using FSIM metrics [20]
and SIFT matching [19]. One can readily see that our method-
ology produces the largest values in the IQA metrics. Results
for matching show that our approach provides the largest
number of correct matches, while the number of detected
keypoints for UDCP and CLAHE approaches are the largest.
The increasing in the contrast and, mainly, in the noise produce
these results.

B. Real Results

We show real results in two scenarios. Firstly, we captured
underwater images in the Brazil’s Southeast Coast with depth
ranging from 12m to 20m. Furthermore, we captured a
sequence from a residential area in a foggy day.

For the underwater sequence, the estimated attenuation
coefficient is η = [0.0335, 0.0331, 0.0289] for each RGB
channel, respectively. The blue channel typically has a smaller
attenuation value while the red channel has a larger value as
shown in the results. It is worth noting that this coefficient
is obtained up to a scale factor due to the depth map esti-
mation, and they are similar to each other due to the water
characteristics and depth of the image acquisition.

Fig. 3a is a sample underwater image with limited visibility
and significant color distortion. Fig. 3b shows restored image
by our method, where the quality is improved. Results ob-
tained using CLAHE are shown in Fig. 3d, where the contrast
and the noise are increased, and the colors are distorted.
Restored images using histogram equalization and UDCP are
shown in fig. 3c and 3e, respectively.

Table II shows qualitative evaluation for the underwater
sequence. Our methods outperforms the others in term of the τ
metric. Our method obtains improvement in terms of contrast
and slightly smaller values in terms of new edges. CLAHE
obtains the largest values of r because of the increase in
the overall contrast, however with some color distortion and
increasing the noise. Our approach also provides the largest
number of correct matches using SIFT [19]. However, the
number of detected keypoints for the CLAHE method is the
largest. This results is expected since the restoration obtained

Table II
COMPARATIVE STUDY USING THE AVERAGE OF THE RESTORATION SCORE
τ [18] AND SIFT MATCHING [19] FOR THE SEQUENCES IN FIG. 3. THE

BEST AND SECOND BEST RESULTS ARE HIGHLIGHTED IN BLUE AND LIGHT
BLUE LETTERS, RESPECTIVELY.

Underwater Sequence Foggy Sequence
e r τ Match. Pts. e r τ Match. Pts.

UDCP/DCP 1.7089 1.2591 3.9678 1 18 1.4185 0.7877 3.2063 10 30
Hist. Eq. 2.5430 2.4544 5.9885 10 197 1.5540 1.8267 4.3667 70 286
CLAHE 1.8821 2.8494 5.7315 11 391 0.4996 1.5081 3.0077 65 265

Our Method 2.7057 2.6493 6.3488 33 375 1.5804 1.9689 4.5430 78 360

by CLAHE presented a large r. However, this restoration is not
stable, thus it does not increase the number of correct matches.
Our method is able to significantly improve the number of
matches, as well as the number of detected keypoints. It is
also corroborated by the improvement in terms of contrast, r.

A foggy sequence is also shown in Fig. 3. Fig.3f shows
a sample image that presents limited visibility and color
distortion. Fig. 3g shows our restoration. The visibility and the
color are improved, mainly in the houses (bottom left). The
buildings in the center of image are under a strong “haze”
layer, thus limiting the capability of restoration due to the
loss of information. However, the contours of the buildings
are recovered by our approach. The result for histogram
equalization (Fig. 3h) is similar to our result. One important
difference can be noted in the largest tree that the our method
is able to improve. The result produced by CLAHE (Fig. 3i)
is imperceptible. DCP fails to estimate the global light (Fig.
3j.), thus the image becomes darker with limited restoration.

The estimated attenuation coefficient for the foggy sequence
is η = [0.1752;
0.2026; 0.1882]. Differently to the underwater sequence, the
red channel is the smallest attenuation coefficient while the
green channel presents the largest value. These three coeffi-
cients are relatively similar (≈ 15%) as expected.

Table II also shows qualitative evaluation for the foggy
sequence. Our method outperforms the others in term of the
τ metric. Our method obtains similar results to histogram
equalization method. However, our method presents a small
advantage in all metrics. The results of CLAHE technique is
limited, presenting a small improvement. Therefore, CLAHE
obtains the smallest values in the number of edges and the
tau metric. DCP distorts the colors, but this fact is not
take into account by this metric. Our method obtains the
largest number of correct matches using SIFT [19], as well as
detected keypoints. The histogram equalization also presents
good results.

VI. CONCLUSIONS

This work proposed a new methodology to restore sequence
of images acquired in participating media. We explore the
temporal relation between the images that allow us to estimate
scene structure, camera’s pose and depth maps. The relation
is obtained by a new formulation of optical flow adapted
for participating media that depends on the knowledge of
the medium transmission, which is computed by UDCP/DCP.
Finally, we developed a new robust methodology to estimate
the most critical parameter of the medium: the attenuation
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Figure 3. Qualitative comparison using a sample image acquired in naturally lit shallow oceanic water and in a foggy day: original image (a,f), restored
using our method (b,g), histogram equalization (c,h) , CLAHE [17] (d,i), UDCP (e), and DCP [4] (j).

coefficient. Qualitative and quantitative results in simulated
and real images show the quality of the restoration obtained
by our approach. The estimated depth maps is still limited,
but enough to the restoration task. The proposed method
to estimate the attenuation coefficient is robust even in the
presence of outliers.

Future work will focus on investigating the structure from
motion method to improve the depth map estimation and the
inclusion of artificial illumination in the scene. Furthermore,
a new method to quantitatively evaluate the image restoration
methods will be investigated.

The results of this work were partly published in interna-
tional conferences and an international journal1. Furthermore,
some papers are under submission/review2. This work is
awarded with a sandwich doctorate scholarship from PDSE-
CAPES in CSIRO-Australia.
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